
PL/SQL

PL/SQL (Procedural Language/SQL) is Oracle’s extension of SQL that adds

procedural features like loops, conditions, and error handling. It allows developers to write

powerful programs that combine SQL queries with logic to control how data is processed.

With PL/SQL, complex operations, calculations, and error handling can be performed

directly within the Oracle database, making data manipulation more efficient and flexible.

PL/SQL allows developers to:

 Execute SQL queries and DML commands inside procedural blocks.

 Define variables and perform complex calculations.

 Create reusable program units, such as procedures, functions, and triggers.

 Handle exceptions, ensuring the program runs smoothly even when errors occur.

Key Features of PL/SQL

PL/SQL brings the benefits of procedural programming to the relational database world.

Some of the most important features of PL/SQL include:

 Block Structure: PL/SQL can execute a number of queries in one block using single

command.

 Procedural Constructs: One can create a PL/SQL unit such as procedures, functions,

packages, triggers, and types, which are stored in the database for reuse by applications.

 Error Handling: PL/SQL provides a feature to handle the exception which occurs in

PL/SQL block known as exception handling block.

 Reusable Code: Create stored procedures, functions, triggers, and packages, which can

be executed repeatedly.

 Performance: Reduces network traffic by executing multiple SQL statements within a

single block

Structure of PL/SQL Block

PL/SQL extends SQL by adding constructs found in procedural languages, resulting

in a structural language that is more powerful than SQL. The basic unit in PL/SQL is a block.

All PL/SQL programs are made up of blocks, which can be nested within each other.

Typically, each block performs a logical action in the program. A block has the following

structure:

DECLARE

declaration statements;

BEGIN

executable statements

EXCEPTIONS

exception handling statements

END;

PL/SQL code is written in blocks, which consist of three main sections:

 Declare section starts with DECLARE keyword in which variables, constants, records as

cursors can be declared which stores data temporarily. It basically consists definition of

PL/SQL identifiers. This part of the code is optional.

 Execution section starts with BEGIN and ends with END keyword. This is a mandatory

section and here the program logic is written to perform any task like loops and

conditional statements. It supports all DML commands, DDL commands and SQL*PLUS

built-in functions as well.

 Exception section starts with EXCEPTION keyword. This section is optional which

contains statements that are executed when a run-time error occurs. Any exceptions can

be handled in this section.

PL/SQL Identifiers

In PL/SQL, identifiers are names used to represent various program elements like

variables, constants, procedures, cursors, triggers etc. These identifiers allow you to store,

manipulate, and access data throughout your PL/SQL code.

1. Variables in PL/SQL

Like several other programming languages, variables in PL/SQL must be declared

prior to its use. A variable is like a container that holds data during program execution. Each

variable must have a valid name and a specific data type.

Syntax for declaration of variables:

variable_name datatype [NOT NULL := value];

 variable_name: The name of the variable.

 datatype: The data type of the variable (e.g., INTEGER, VARCHAR2).

 NOT NULL: This optional constraint means the variable cannot be left empty.

 := value: This optional assignment assigns an initial value to the variable.

Declare a Variable in PL/SQL

When writing PL/SQL code it is important to declare variables properly to store and

manipulate data effectively. Variables act as containers for values and enable various

operations on the stored data.

Variables in PL/SQL are declared using the DECLARE keyword within an

anonymous block or a named program unit such as a procedure, function, or package.

Common Methods for Declaring Variables in PL/SQL

The below methods are used to declare a variable in PL/SQL are as follows:

Table of Content

 Using Declare Variables in PL/SQL

 Using Initializing Variables in PL/SQL

 Using Variable Scope in PL/SQL

 Using Variable Attributes

1. Using Declare Variables in PL/SQL

To declare a variable in PL/SQL, use the DECLARE keyword followed by the

variable name and its data type. Optionally, you can also assign an initial value to the variable

using the ':=' operator.

Syntax:

DECLARE

https://www.geeksforgeeks.org/plsql/plsql-introduction/
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#1-using-declare-variables-in-plsql
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#2-using-initializing-variables-in-plsql
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#3-using-variable-scope-in-plsql
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#4-using-variable-attributes

 variable_name datatype := initial_value;

here,

 variable_name: It is the name of the variable.

 datatype: It is the data type of the variable.

 := initial_value: It is an optional assignment of an initial value to the variable.

Example:

DECLARE

 name VARCHAR2(20) := 'GeeksForGeeks';

BEGIN

 DBMS_OUTPUT.PUT_LINE(name);

END;

2. Using Initializing Variables in PL/SQL

In this method Variables can be initialized in two ways either during declaration or

later in the code.

a. Initializing during declaration

Variables can be assigned values when declared, as shown below:

Syntax:

DECLARE

 my_variable NUMBER := value;

BEGIN

 -- PL/SQL code

END;

Example:

DECLARE

 name VARCHAR2(20) := 'GeeksForGeeks';

BEGIN

 DBMS_OUTPUT.PUT_LINE(name);

END;

b. Initialization After Declaration

You can also assign a value to a variable later in the code using the := operator.

Syntax:

DECLARE

 my_variable NUMBER;

BEGIN

 my_variable := value;

END;

Example:

DECLARE

 num1 NUMBER;

 num2 NUMBER;

 result NUMBER;

BEGIN

 num1 := 5;

 num2 := 3;

 result := num1 + num2;

 DBMS_OUTPUT.PUT_LINE('Sum: ' || result);

END;

3. Using Variable Scope in PL/SQL

Variable scope determines where a variable can be accessed within a program. In

PL/SQL, variable scope can be either local or global.

 Local Variables: Declared within a block or subprogram, accessible only inside that

block or subprogram.

 Global Variables: Declared in the outermost block and accessible by nested blocks.

Example:

DECLARE

 global_var NUMBER; -- global variable

BEGIN

 -- PL/SQL code using global_var

 DECLARE

 local_var NUMBER; -- local variable

 BEGIN

 -- PL/SQL code using local_var and global_var

 END;

 -- Here you can't access local_var

END;

Explanation: The global_var can be accessed throughout the entire program, while

the local_var is only accessible within the inner block

4. Using Variable Attributes (%TYPE and %ROWTYPE)

PL/SQL provides two powerful attributes, %TYPE and %ROWTYPE, which allow

variables to inherit data types from existing columns or entire rows.

 %TYPE: It defines a variable with the same data type as another variable or column.

 %ROWTYPE: It defines a record with the same structure as a table or cursor.

1. Using %TYPE Attribute

In this example, we have declared a variable salary_var using %TYPE to match

the data type of the salary column in the employees table then we have assigned a value

to salary_var and displayed the assigned value using DBMS_OUTPUT.PUT_LINE.

DECLARE

 salary_var employees.salary%TYPE;

BEGIN

 -- Assign a value to the variable

 salary_var := 70000;

 -- Display the assigned value

 DBMS_OUTPUT.PUT_LINE('Assigned Salary: ' || salary_var);

END;

2. Using %ROWTYPE Attribute

In this example, We have declared a record

variable employee_record using %ROWTYPE to match the structure of the employees

table and fetched the data from the employees table into the employee_record variable

using a SELECT INTO statement then we have displayed the retrieved data from

the employee_record using DBMS_OUTPUT.PUT_LINE.

DECLARE

 employee_record employees%ROWTYPE;

BEGIN

 -- Fetch data from the table into the record variable

https://www.geeksforgeeks.org/sql/select-into-statement-in-sql/

 SELECT * INTO employee_record FROM employees WHERE employee_id = 2;

 -- Display the retrieved data

 DBMS_OUTPUT.PUT_LINE('Employee ID: ' || employee_record.employee_id);

 DBMS_OUTPUT.PUT_LINE('First Name: ' || employee_record.first_name);

 DBMS_OUTPUT.PUT_LINE('Last Name: ' || employee_record.last_name);

 DBMS_OUTPUT.PUT_LINE('Salary: ' || employee_record.salary);

END;

Executable Commands Section in a PL/SQL Block

PL/SQL (Procedural Language/Structured Query Language) is an extension of SQL

used in Oracle databases to write procedural code such as loops, conditions, and exception

handling along with SQL statements. A PL/SQL block is the basic unit of execution and

consists of three main sections: the declaration section, the executable section, and the

exception-handling section. Among these, the executable commands section is the most

important part because it contains the actual logic and instructions that the program performs.

Structure of a PL/SQL Block

A typical PL/SQL block has the following structure:

DECLARE

 -- Declaration section (optional)

 -- Variable, constant, and cursor declarations

BEGIN

 -- Executable section (mandatory)

 -- Statements that perform actions

EXCEPTION

 -- Exception-handling section (optional)

END;

/

Out of these sections, only the executable section is mandatory, as it defines what the block

will actually do.

Executable Section

The executable section begins with the keyword BEGIN and ends with the keyword

END. It contains all the executable statements that perform the program’s main tasks, such

as data processing, arithmetic operations, conditional execution, loops, and database

manipulation through SQL commands.

1. SQL Statements

Within the executable section, SQL statements such as SELECT INTO, INSERT,

UPDATE, and DELETE are used to interact with the database. For example:

BEGIN

 INSERT INTO employees (emp_id, emp_name) VALUES (101, 'John');

 UPDATE employees SET salary = salary + 1000 WHERE emp_id = 101;

END;

/

These statements allow the PL/SQL program to modify and retrieve data from database tables.

2. Procedural Statements

PL/SQL extends SQL by providing procedural constructs such as:

 Conditional statements (IF...THEN...ELSE) for decision-making.

 Loops (FOR, WHILE, LOOP) for repetition.

 Assignments to variables using the := operator.

Example:

BEGIN

 IF salary < 5000 THEN

 salary := salary + 500;

 ELSE

 salary := salary + 200;

 END IF;

END;

/

These constructs make PL/SQL more powerful than standard SQL by allowing logical control

over program flow.

3. Function and Procedure Calls

The executable section can call procedures and functions defined elsewhere in the

database or within the same block. For example:

BEGIN

 calculate_bonus(emp_id => 101);

END;

/

This enables modular programming and code reuse.

4. Input and Output Operations

To display or check the results of execution, PL/SQL uses the

DBMS_OUTPUT.PUT_LINE procedure. This is often used in the executable section for

debugging or displaying messages:

BEGIN

 DBMS_OUTPUT.PUT_LINE('Employee record inserted successfully.');

END;

/

Importance of the Executable Section

The executable section is crucial because it represents the action part of the PL/SQL block.

Without it, the block would not perform any task. It integrates SQL with procedural features,

allowing developers to:

 Process and manipulate database data.

 Implement business logic inside the database.

 Handle complex decision-making using control structures.

 Automate repetitive database operations.

Exception Handling in PL/SQL

An exception is an error which disrupts the normal flow of program instructions.

PL/SQL provides us the exception block which raises the exception thus helping the

programmer to find out the fault and resolve it.

Syntax:

DECLARE

-- Declaration statements;

BEGIN

 -- SQL statements;

-- Procedural statements;

EXCEPTION

-- Exception handling statements;

END;

There are two types of exceptions defined in PL/SQL

1. User defined exception.

2. System defined exceptions.

Types of Exception Handling

There are two types of exceptions defined in PL/SQL :

1. System-Defined Exceptions

These are predefined exceptions that occur when Oracle rules or constraints are violated.

They include NO_DATA_FOUND, ZERO_DIVIDE, TOO_MANY_ROWS, etc.

DECLARE

a NUMBER := 10;

b NUMBER := 0;

c NUMBER;

BEGIN

c := a / b;

-- Division by zero DBMS_OUTPUT.PUT_LINE('Result: ' || c);

EXCEPTION

WHEN ZERO_DIVIDE THEN

DBMS_OUTPUT.PUT_LINE('Error: Division by zero is not allowed.');

END;

Output:

Error: Division by zero is not allowed.

In this example:

 Variable Declaration: a = 10, b = 0.

 Program tries to divide a / b, which causes an error.

 The EXCEPTION block catches the ZERO_DIVIDE error.

 It prints: "Error: Division by zero is not allowed.

1. Named System Exception:

These exceptions have predefined names such

as ACCESS_INTO_NULL, DUP_VAL_ON_INDEX, LOGIN_DENIED, etc.

2. Unnamed System Exception:

Unnamed system exceptions are predefined by Oracle, but they don’t have a specific

name like NO_DATA_FOUND. They occur less frequently and are identified by Oracle error

codes .

2. User Define Exception

User-defined exceptions are custom exceptions created by the programmer to handle

specific business logic errors that are not covered by Oracle's predefined exceptions. These

exceptions must be declared explicitly and are raised using the RAISE keyword.

Syntax:

DECLARE

 exception_name EXCEPTION; -- Declaration of user-defined exception

BEGIN

-- Logic

 IF condition THEN

 RAISE exception_name; -- Raising the exception explicitly

 END IF;

EXCEPTION

 WHEN exception_name THEN -- Handling code

 DBMS_OUTPUT.PUT_LINE('Exception handled');

END;

PL/SQL Triggers

PL/SQL triggers are block structures and predefined programs invoked

automatically when some event occurs. They are stored in the database and invoked

repeatedly in a particular scenario. There are two states of the triggers, they

are enabled and disabled. When the trigger is created it is enabled. CREATE

TRIGGER statement creates a trigger. A triggering event is specified on a table, a view, a

schema, or a database. BEFORE and AFTER are the trigger Timing points.

They are associated with response-based events such as a

 Database Definition Language statements such as CREATE, DROP or ALTER.

 Database Manipulation Language statements such as UPDATE, INSERT or DELETE.

 Database operations such as LOGON, LOGOFF, STARTUP, and SHUTDOWN .

Types of Triggers in PL/SQL with Examples

Based on a variety of factors, triggers in PL/SQL may be divided into distinct

categories. To help you understand, let’s go through each type of trigger in PL SQL with

examples.

1. Row-Level Triggers

A row-level trigger occurs once for each row that a triggering event affects.

A. Before Row Triggers

This trigger occurs before the insertion, update, or deletion of a row. It may be used to

change the values of the currently processed row.

B. After-Row Triggers

Following an INSERT, UPDATE, or DELETE operation on a row, this type of trigger

occurs. It may be used to conduct actions based on the row’s modifications.

https://www.geeksforgeeks.org/sql/sql-ddl-dql-dml-dcl-tcl-commands/

2. Statement-Level Triggers

No matter how many rows are impacted, a trigger event on a table always fires a

statement-level trigger.

A. Before Statement Triggers

This trigger occurs before the execution of a SQL query. It can be used to take actions

or validations before processing the statement.

Example:

CREATE OR REPLACE TRIGGER before_statement_trigger

BEFORE INSERT ON student

BEGIN

 -- Perform some validation or action before the insert statement is executed

 IF : NEW.fees < 0 THEN

 RAISE_APPLICATION_ERROR(-20001, 'Fees cannot be negative.');

 END IF;

END;

B. After Statement Triggers

Upon execution of a SQL statement, this trigger occurs. It can be used to conduct

actions based on the statement’s overall outcome.

Example:

CREATE OR REPLACE TRIGGER after_statement_trigger

AFTER INSERT OR DELETE ON student

BEGIN

 -- Update the student count in a separate table

 UPDATE student_count_table

 SET count = (SELECT COUNT(*) FROM student);

END;

3. Database-Level Triggers

No matter which user or application provides the statement, database triggers in PL

SQL are specified on a table, saved in the corresponding database, and performed as a result

of an INSERT, UPDATE, or DELETE statement being made against a table.

A. Startup Triggers

This trigger activates after the initialization of the database. It can be used to undertake

setup activities or to carry out particular operations during startup.

Enabling or Disabling an Individual Trigger:

To enable or disable a single trigger, use the ALTER TRIGGER statement followed by

the trigger name and either ENABLE or DISABLE.

Code

ALTER TRIGGER trigger_name ENABLE;

ALTER TRIGGER trigger_name DISABLE;

Example:

Code

ALTER TRIGGER trg_employee_audit ENABLE;

ALTER TRIGGER trg_employee_audit DISABLE;

2. Enabling or Disabling All Triggers on a Table:

To enable or disable all triggers associated with a particular table, use the ALTER

TABLE statement followed by the table name and either ENABLE ALL

TRIGGERS or DISABLE ALL TRIGGERS.

Code

ALTER TABLE table_name ENABLE ALL TRIGGERS;

ALTER TABLE table_name DISABLE ALL TRIGGERS;

Example:

Code

ALTER TABLE employees ENABLE ALL TRIGGERS;

ALTER TABLE employees DISABLE ALL TRIGGERS;

3. Creating a Disabled Trigger:

When creating a new trigger, you can specify that it should be created in a disabled

state by including the DISABLE keyword in the CREATE TRIGGER statement. This can be

useful for testing or when you don't want the trigger to fire immediately after creation.

Code

CREATE OR REPLACE TRIGGER trg_new_feature

BEFORE INSERT ON new_table

DISABLE

BEGIN

 -- Trigger logic here

END;

/

Replacing Objects (using OR REPLACE)

The OR REPLACE clause is used with CREATE statements (e.g., CREATE

PROCEDURE, CREATE FUNCTION, CREATE PACKAGE, CREATE VIEW, CREATE

TRIGGER) to modify an existing object without explicitly dropping and re-creating it. Syntax

Example (Procedure).

Dropping Objects (using DROP)

The DROP statement is used to permanently remove an object from the database.

Syntax Examples:

Procedure:

Code

 DROP PROCEDURE my_procedure;

package.

Code

 DROP PACKAGE my_package;

view.

Code

 DROP VIEW my_view;

trigger.

Code

 DROP TRIGGER my_trigger;

Procedures in PL/SQL

PL/SQL procedures are reusable code blocks that perform specific actions or logic

within a database environment. They consist of two main components such as the procedure

header which defines the procedure name & optional parameters and the procedure body

which contains the executable statements implementing the desired business logic.

The procedure contains two parts:

Procedure Header

 The procedure header includes the procedure name and optional parameter list.

 It is the first part of the procedure and specifies the name and parameters

Procedure Body

 The procedure body contains the executable statements that implement the specific

business logic.

 It can include declarative statements, executable statements, and exception-handling

statements

Create Procedures in PL/SQL

To create a procedure in PL/SQL, use the CREATE PROCEDURE command:

Syntax:

CREATE PROCEDURE procedure_name

@Parameter1 INT,

@Parameter2 VARCHAR(50) = NULL,

@ReturnValue INT OUTPUT

AS

BEGIN

END

GO

Parameters in Procedures

In PL/SQL, parameters are used to pass values into procedures. There are three types of

parameters used in procedures:

IN parameters

 Used to pass values into the procedure

 Read-only inside the procedure

 Can be a variable, literal value, or expression in the calling statement.

OUT parameters

 Used to return values from the procedure to the calling program

 Read-write inside the procedure

 Must be a variable in the calling statement to hold the returned value

IN OUT parameters

 Used for both passing values into and returning values from the procedure

 Read-write inside the procedure

 Must be a variable in the calling statement

Modify Procedures in PL/SQL

To modify an existing procedures in PL/SQL use the ALTER PROCEDURE command:

Syntax

ALTER PROCEDURE Syntax is:

SET ANSI_NULLS ON

SET QUOTED_IDENTIFIER ON

GO

ALTER PROCEDURE procedure_name

@Parameter1 INT,

@Parameter2 VARCHAR(50) = NULL,

@ReturnValue INT OUTPUT

AS

BEGIN

-- Query

END

GO

Drop Procedure in PL/SQL

To drop a procedure in PL/SQL use the DROP PROCEDURE command

Syntax:

DROP PROCEDURE procedure_name

PL/SQL DROP PROCEDURE Example

In this example, we will delete a procedure in PL/SQL

DROP PROCEDURE GetStudentDetails

Functions in PL/SQL

A PL/SQL function is a named, self-contained block of code that performs a specific

task and always returns a single value. Functions can accept zero or more input parameters and

are typically used to compute and return a result. They can be called from SQL statements,

other PL/SQL blocks, or even within packages.

Syntax Example:

Code

CREATE OR REPLACE FUNCTION calculate_square (p_number IN NUMBER)

RETURN NUMBER

IS

 v_square NUMBER;

BEGIN

 v_square := p_number * p_number;

 RETURN v_square;

END;

/

PL/SQL Packages

PL/SQL packages are a way to organize and encapsulate

related procedures, functions, variables, triggers, and other PL/SQL items into a single

item. Packages provide a modular approach to write and maintain the code. It makes it easy

to manage large codes.

A package is compiled and then stored in the database, which then can be shared with

many applications. The package also has specifications, which declare an item to be public

or private. Public items can be referenced from outside of the package.

A PL/SQL package is a collection of related Procedures, Functions, Variables, and

other elements that are grouped for Modularity and Reusability.

Key Benefits of Using PL/SQL Packages

The needs of the Packages are described below:

 Modularity: Packages provide a modular structure, allowing developers to organize and

manage code efficiently.

 Code Reusability: Procedures and functions within a package can be reused across

multiple programs, reducing redundancy.

 Private Elements: Packages support private procedures and functions, limiting access to

certain code components.

 Encapsulation: Packages encapsulate related logic, protecting internal details and

promoting a clear interface to other parts of the code.

Structure of a PL/SQL Package

A PL/SQL package consists of two parts:

1. A package Specification

2. A package Body

1. Package Specification

The package specification declares the public interface of the package. It includes

declarations of procedures, functions, variables, cursors, and other constructs that are

meant to be accessible from outside the package. The specification is like a header file that

defines what a package can do.

Example of Package Specification:

CREATE OR REPLACE PACKAGE my_package AS

 PROCEDURE my_procedure(p_param1 NUMBER);

 FUNCTION calculate_sum(x NUMBER, y NUMBER) RETURN NUMBER;

 -- Other declarations...

END my_package;

2. Package Body

The package body contains the implementation of the details of the package. It

includes the coding of the procedures or functions which are decalared in the package

specification. The body can also contain private variables and procedures that are not

exposed to outside the code.

Example of Package Body:

CREATE OR REPLACE PACKAGE BODY my_package AS

 PROCEDURE my_procedure(p_param1 NUMBER) IS

 BEGIN

 -- Implementation code...

 END my_procedure;

 FUNCTION calculate_sum(x NUMBER, y NUMBER) RETURN NUMBER IS

 BEGIN

 -- Implementation code...

 END calculate_sum;

 -- Other implementation details...

END my_package;

Once your create your package in above two steps, you can use it in PL/SQL codes.

This allows for modular programming, code reuse, and better maintenance of the the code

base.

Using Oracle PL/SQL Packages in Code

DECLARE

 result NUMBER;

BEGIN

 -- Call a procedure from the package

 my_package.my_procedure(42);

 -- Call a function from the package

 result := my_package.calculate_sum(10, 20);

 -- Other code...

END;

	PL/SQL
	Key Features of PL/SQL
	Structure of PL/SQL Block
	PL/SQL Identifiers
	1. Variables in PL/SQL

	Declare a Variable in PL/SQL
	Common Methods for Declaring Variables in PL/SQL
	1. Using Declare Variables in PL/SQL
	Syntax:
	Example:

	2. Using Initializing Variables in PL/SQL
	a. Initializing during declaration
	b. Initialization After Declaration

	3. Using Variable Scope in PL/SQL
	Example:

	4. Using Variable Attributes (%TYPE and %ROWTYPE)
	1. Using %TYPE Attribute
	2. Using %ROWTYPE Attribute

	Executable Commands Section in a PL/SQL Block
	Structure of a PL/SQL Block
	Executable Section
	1. SQL Statements
	2. Procedural Statements
	3. Function and Procedure Calls
	4. Input and Output Operations

	Importance of the Executable Section

	Exception Handling in PL/SQL
	Types of Exception Handling
	1. System-Defined Exceptions
	1. Named System Exception:
	2. Unnamed System Exception:

	2. User Define Exception

	PL/SQL Triggers
	Types of Triggers in PL/SQL with Examples
	1. Row-Level Triggers
	A. Before Row Triggers
	B. After-Row Triggers

	2. Statement-Level Triggers
	A. Before Statement Triggers
	B. After Statement Triggers

	3. Database-Level Triggers
	A. Startup Triggers

	Procedures in PL/SQL
	The procedure contains two parts:
	Procedure Header
	Procedure Body

	Create Procedures in PL/SQL
	Parameters in Procedures
	IN parameters
	OUT parameters
	IN OUT parameters

	Modify Procedures in PL/SQL
	Drop Procedure in PL/SQL
	PL/SQL DROP PROCEDURE Example

	PL/SQL Packages
	Key Benefits of Using PL/SQL Packages
	Structure of a PL/SQL Package
	1. Package Specification
	Example of Package Specification:

	2. Package Body
	Example of Package Body:

	Using Oracle PL/SQL Packages in Code

