PL/SQL
PL/SQL (Procedural Language/SQL) is Oracle’s extension of SQL that adds
procedural features like loops, conditions, and error handling. It allows developers to write
powerful programs that combine SQL queries with logic to control how data is processed.
With PL/SQL, complex operations, calculations, and error handling can be performed
directly within the Oracle database, making data manipulation more efficient and flexible.
PL/SQL allows developers to:
o Execute SQL queries and DML commands inside procedural blocks.
o Define variables and perform complex calculations.
« Create reusable program units, such as procedures, functions, and triggers.
« Handle exceptions, ensuring the program runs smoothly even when errors occur.
Key Features of PL/SQL
PL/SQL brings the benefits of procedural programming to the relational database world.
Some of the most important features of PL/SQL include:
e Block Structure: PL/SQL can execute a number of queries in one block using single
command.
e Procedural Constructs: One can create a PL/SQL unit such as procedures, functions,
packages, triggers, and types, which are stored in the database for reuse by applications.
e Error Handling: PL/SQL provides a feature to handle the exception which occurs in
PL/SQL block known as exception handling block.
o Reusable Code: Create stored procedures, functions, triggers, and packages, which can
be executed repeatedly.
o Performance: Reduces network traffic by executing multiple SQL statements within a
single block
Structure of PL/SQL Block
PL/SQL extends SQL by adding constructs found in procedural languages, resulting
in a structural language that is more powerful than SQL. The basic unit in PL/SQL is a block.
All PL/SQL programs are made up of blocks, which can be nested within each other.

| PLsaL Block |

Declare
Begin

Exception

End

Typically, each block performs a logical action in the program. A block has the following
structure:
DECLARE

declaration statements;

BEGIN

executable statements

EXCEPTIONS
exception handling statements

END;

PL/SQL code is written in blocks, which consist of three main sections:

o Declare section starts with DECLARE keyword in which variables, constants, records as
cursors can be declared which stores data temporarily. It basically consists definition of
PL/SQL identifiers. This part of the code is optional.

o Execution section starts with BEGIN and ends with END keyword. This is a mandatory
section and here the program logic is written to perform any task like loops and
conditional statements. It supports all DML commands, DDL commands and SQL*PLUS
built-in functions as well.

o Exception section starts with EXCEPTION keyword. This section is optional which
contains statements that are executed when a run-time error occurs. Any exceptions can
be handled in this section.

PL/SQL ldentifiers

In PL/SQL, identifiers are names used to represent various program elements like
variables, constants, procedures, cursors, triggers etc. These identifiers allow you to store,
manipulate, and access data throughout your PL/SQL code.
1. Variables in PL/SQL

Like several other programming languages, variables in PL/SQL must be declared
prior to its use. A variable is like a container that holds data during program execution. Each
variable must have a valid name and a specific data type.
Syntax for declaration of variables:
variable_name datatype [NOT NULL :=value];
e variable_name: The name of the variable.
o datatype: The data type of the variable (e.g., INTEGER, VARCHAR?2).
e« NOT NULL.: This optional constraint means the variable cannot be left empty.
o :=value: This optional assignment assigns an initial value to the variable.
Declare a Variable in PL/SQL

When writing PL/SQL code it is important to declare variables properly to store and
manipulate data effectively. Variables act as containers for values and enable various
operations on the stored data.

Variables in PL/SQL are declared using the DECLARE keyword within an
anonymous block or a named program unit such as a procedure, function, or package.
Common Methods for Declaring Variables in PL/SQL

The below methods are used to declare a variable in PL/SQL are as follows:
Table of Content

e Using Declare Variables in PL/SQL
e Using Initializing Variables in PL/SQL
e Using Variable Scope in PL/SQL
e Using Variable Attributes
1. Using Declare Variables in PL/SQL
To declare a variable in PL/SQL, use the DECLARE keyword followed by the

variable name and its data type. Optionally, you can also assign an initial value to the variable

using the ":=" operator.
Syntax:
DECLARE

https://www.geeksforgeeks.org/plsql/plsql-introduction/
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#1-using-declare-variables-in-plsql
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#2-using-initializing-variables-in-plsql
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#3-using-variable-scope-in-plsql
https://www.geeksforgeeks.org/plsql/how-to-declare-a-variable-in-pl-sql/#4-using-variable-attributes

variable_name datatype := initial_value;
here,
e variable_name: It is the name of the variable.

o datatype: It is the data type of the variable.

o :=initial_value: It is an optional assignment of an initial value to the variable.
Example:
DECLARE
name VARCHAR2(20) := 'GeeksForGeeks';
BEGIN
DBMS_OUTPUT.PUT_LINE(name);
END;

2. Using Initializing Variables in PL/SQL
In this method Variables can be initialized in two ways either during declaration or

later in the code.
a. Initializing during declaration
Variables can be assigned values when declared, as shown below:
Syntax:
DECLARE

my_variable NUMBER := value;
BEGIN

-- PL/SQL code
END;
Example:
DECLARE

name VARCHAR2(20) := 'GeeksForGeeks';
BEGIN

DBMS_OUTPUT.PUT_LINE(name);
END;

b. Initialization After Declaration
You can also assign a value to a variable later in the code using the := operator.

Syntax:

DECLARE
my_variable NUMBER;
BEGIN
my_variable := value;
END;
Example:
DECLARE
numl NUMBER;
num2 NUMBER;
result NUMBER;

BEGIN
numl :=5;
num2 := 3;

result := num1 + num2;
DBMS_OUTPUT.PUT_LINE('Sum: ' || result);
END;

3. Using Variable Scope in PL/SQL
Variable scope determines where a variable can be accessed within a program. In
PL/SQL, variable scope can be either local or global.
e Local Variables: Declared within a block or subprogram, accessible only inside that
block or subprogram.
o Global Variables: Declared in the outermost block and accessible by nested blocks.
Example:
DECLARE
global_var NUMBER; -- global variable
BEGIN
-- PL/SQL code using global _var
DECLARE
local_var NUMBER,; -- local variable
BEGIN
-- PL/SQL code using local_var and global_var
END;

-- Here you can't access local_var
END;
Explanation: The global_var can be accessed throughout the entire program, while
the local_var is only accessible within the inner block
4. Using Variable Attributes (% TYPE and %ROWTYPE)
PL/SQL provides two powerful attributes, %TYPE and %ROWTYPE, which allow
variables to inherit data types from existing columns or entire rows.
e 9%TYPE: It defines a variable with the same data type as another variable or column.
e %ROWTYPE: It defines a record with the same structure as a table or cursor.
1. Using % TYPE Attribute
In this example, we have declared a variable salary_var using %TYPE to match
the data type of the salary column in the employees table then we have assigned a value
to salary_var and displayed the assigned value using DBMS_OUTPUT.PUT_LINE.
DECLARE
salary_var employees.salary%TYPE;
BEGIN
-- Assign a value to the variable

salary_var := 70000;

-- Display the assigned value
DBMS_OUTPUT.PUT_LINE('Assigned Salary: ' || salary_var);
END;

2. Using %ROWTYPE Attribute
In this example, We have declared a record

variable employee_record using %ROWTYPE to match the structure of the employees
table and fetched the data from the employees table into the employee_record variable
using aSELECT INTO statement then we have displayed the retrieved data from
the employee_record using DBMS_OUTPUT.PUT_LINE.
DECLARE

employee_record employees%sROWTYPE;
BEGIN

-- Fetch data from the table into the record variable

https://www.geeksforgeeks.org/sql/select-into-statement-in-sql/

SELECT * INTO employee_record FROM employees WHERE employee_id = 2;

-- Display the retrieved data
DBMS_OUTPUT.PUT_LINE(Employee ID: ' || employee_record.employee_id);
DBMS_OUTPUT.PUT_LINE('First Name: ' || employee_record.first_name);
DBMS_OUTPUT.PUT_LINE('Last Name: ' || employee_record.last_name);
DBMS_OUTPUT.PUT_LINE('Salary: ' || employee_record.salary);

END;

Executable Commands Section in a PL/SQL Block

PL/SQL (Procedural Language/Structured Query Language) is an extension of SQL
used in Oracle databases to write procedural code such as loops, conditions, and exception
handling along with SQL statements. A PL/SQL block is the basic unit of execution and
consists of three main sections: the declaration section, the executable section, and the
exception-handling section. Among these, the executable commands section is the most

important part because it contains the actual logic and instructions that the program performs.

Structure of a PL/SQL Block
A typical PL/SQL block has the following structure:

DECLARE

-- Declaration section (optional)

-- Variable, constant, and cursor declarations
BEGIN

-- Executable section (mandatory)

-- Statements that perform actions
EXCEPTION

-- Exception-handling section (optional)
END;
/

Out of these sections, only the executable section is mandatory, as it defines what the block

will actually do.

Executable Section

The executable section begins with the keyword BEGIN and ends with the keyword
END. It contains all the executable statements that perform the program’s main tasks, such
as data processing, arithmetic operations, conditional execution, loops, and database
manipulation through SQL commands.

1. SQL Statements

Within the executable section, SQL statements such as SELECT INTO, INSERT,
UPDATE, and DELETE are used to interact with the database. For example:

BEGIN
INSERT INTO employees (emp_id, emp_name) VALUES (101, 'John’);
UPDATE employees SET salary = salary + 1000 WHERE emp _id = 101,
END;
/

These statements allow the PL/SQL program to modify and retrieve data from database tables.

2. Procedural Statements
PL/SQL extends SQL by providing procedural constructs such as:

« Conditional statements (IF...THEN...ELSE) for decision-making.
e Loops (FOR, WHILE, LOOP) for repetition.

e Assignments to variables using the := operator.
Example:

BEGIN

IF salary < 5000 THEN
salary :=salary + 500;
ELSE
salary :=salary + 200;
END IF;
END;
/

These constructs make PL/SQL more powerful than standard SQL by allowing logical control

over program flow.

3. Function and Procedure Calls

The executable section can call procedures and functions defined elsewhere in the

database or within the same block. For example:

BEGIN

calculate_bonus(emp_id => 101);
END;
/

This enables modular programming and code reuse.

4. Input and Output Operations

To display or check the results

of execution, PL/SQL uses the

DBMS_OUTPUT.PUT_LINE procedure. This is often used in the executable section for

debugging or displaying messages:

BEGIN

DBMS_OUTPUT.PUT_LINE('Employee record inserted successfully.');

END;
/

Importance of the Executable Section

The executable section is crucial because it represents the action part of the PL/SQL block.
Without it, the block would not perform any task. It integrates SQL with procedural features,

allowing developers to:

o Process and manipulate database data.
o Implement business logic inside the database.
« Handle complex decision-making using control structures.

o Automate repetitive database operations.

Exception Handling in PL/SQL

An exception is an error which disrupts the normal flow of program instructions.
PL/SQL provides us the exception block which raises the exception thus helping the
programmer to find out the fault and resolve it.
Syntax:
DECLARE
-- Declaration statements;
BEGIN

-- SQL statements;

-- Procedural statements;
EXCEPTION
-- Exception handling statements;
END;
There are two types of exceptions defined in PL/SQL
1. User defined exception.
2. System defined exceptions.
Types of Exception Handling
There are two types of exceptions defined in PL/SQL :
1. System-Defined Exceptions
These are predefined exceptions that occur when Oracle rules or constraints are violated.
They include NO_DATA_FOUND, ZERO_DIVIDE, TOO_MANY_ROWS, etc.

DECLARE

a NUMBER := 10;

b NUMBER :=0;

¢ NUMBER,;

BEGIN

c:=alb;

-- Division by zero DBMS_OUTPUT.PUT_LINE('Result: ' || ¢);
EXCEPTION

WHEN ZERO_DIVIDE THEN
DBMS_OUTPUT.PUT_LINE('Error: Division by zero is not allowed.");
END;

Output:

Error: Division by zero is not allowed.

In this example:

e Variable Declaration: a=10, b = 0.

o Program tries to divide a / b, which causes an error.

e The EXCEPTION block catches the ZERO_DIVIDE error.

e It prints: "Error: Division by zero is not allowed.

1. Named System Exception:

These exceptions have predefined names such
as ACCESS_INTO_NULL, DUP_VAL_ON_INDEX, LOGIN_DENIED, etc.
2. Unnamed System Exception:

Unnamed system exceptions are predefined by Oracle, but they don’t have a specific
name like NO_DATA_FOUND. They occur less frequently and are identified by Oracle error
codes .

2. User Define Exception

User-defined exceptions are custom exceptions created by the programmer to handle
specific business logic errors that are not covered by Oracle's predefined exceptions. These
exceptions must be declared explicitly and are raised using the RAISE keyword.

Syntax:
DECLARE
exception_name EXCEPTION; -- Declaration of user-defined exception
BEGIN
-- Logic

IF condition THEN
RAISE exception_name; -- Raising the exception explicitly
END IF;
EXCEPTION
WHEN exception_name THEN -- Handling code
DBMS_OUTPUT.PUT_LINE('Exception handled";
END;

PL/SQL Triggers

PL/SQL triggers are block structures and predefined programs invoked
automatically when some event occurs. They are stored in the database and invoked
repeatedly in a particular scenario. There are two states of the triggers, they
are enabled and disabled. When the trigger is created it is enabled. CREATE
TRIGGER statement creates a trigger. A triggering event is specified on a table, a view, a
schema, or a database. BEFORE and AFTER are the trigger Timing points.
They are associated with response-based events such as a
« Database Definition Language statements such as CREATE, DROP or ALTER.
« Database Manipulation Language statements such as UPDATE, INSERT or DELETE.
o Database operations such as LOGON, LOGOFF, STARTUP, and SHUTDOWN .

Types of Triggers in PL/SQL with Examples
Based on a variety of factors, triggers in PL/SQL may be divided into distinct
categories. To help you understand, let’s go through each type of trigger in PL SQL with

examples.

1. Row-Level Triggers

A row-level trigger occurs once for each row that a triggering event affects.

A. Before Row Triggers
This trigger occurs before the insertion, update, or deletion of a row. It may be used to

change the values of the currently processed row.

B. After-Row Triggers
Following an INSERT, UPDATE, or DELETE operation on a row, this type of trigger

occurs. It may be used to conduct actions based on the row’s modifications.

https://www.geeksforgeeks.org/sql/sql-ddl-dql-dml-dcl-tcl-commands/

2. Statement-Level Triggers
No matter how many rows are impacted, a trigger event on a table always fires a

statement-level trigger.

A. Before Statement Triggers
This trigger occurs before the execution of a SQL query. It can be used to take actions

or validations before processing the statement.

Example:

CREATE OR REPLACE TRIGGER before_statement_trigger

BEFORE INSERT ON student

BEGIN
-- Perform some validation or action before the insert statement is executed
IF: NEW.fees <0 THEN

RAISE_APPLICATION_ERROR(-20001, 'Fees cannot be negative.);

END IF;

END;

B. After Statement Triggers
Upon execution of a SQL statement, this trigger occurs. It can be used to conduct

actions based on the statement’s overall outcome.

Example:

CREATE OR REPLACE TRIGGER after_statement_trigger
AFTER INSERT OR DELETE ON student
BEGIN
-- Update the student count in a separate table
UPDATE student_count_table
SET count = (SELECT COUNT(*) FROM student);
END;

3. Database-Level Triggers

No matter which user or application provides the statement, database triggers in PL
SQL are specified on a table, saved in the corresponding database, and performed as a result
of an INSERT, UPDATE, or DELETE statement being made against a table.

A. Startup Triggers
This trigger activates after the initialization of the database. It can be used to undertake

setup activities or to carry out particular operations during startup.

Enabling or Disabling an Individual Trigger:

To enable or disable a single trigger, use the ALTER TRIGGER statement followed by
the trigger name and either ENABLE or DISABLE.

Code
ALTER TRIGGER trigger_name ENABLE;
ALTER TRIGGER trigger_name DISABLE;

Example:

Code
ALTER TRIGGER trg_employee _audit ENABLE;
ALTER TRIGGER trg_employee_audit DISABLE;

2. Enabling or Disabling All Triggers on a Table:

To enable or disable all triggers associated with a particular table, use the ALTER
TABLE statement followed by the table name and either ENABLE ALL
TRIGGERS or DISABLE ALL TRIGGERS.

Code
ALTER TABLE table_name ENABLE ALL TRIGGERS;
ALTER TABLE table_name DISABLE ALL TRIGGERS;

Example:

Code
ALTER TABLE employees ENABLE ALL TRIGGERS;
ALTER TABLE employees DISABLE ALL TRIGGERS;

3. Creating a Disabled Trigger:

When creating a new trigger, you can specify that it should be created in a disabled
state by including the DISABLE keyword in the CREATE TRIGGER statement. This can be
useful for testing or when you don't want the trigger to fire immediately after creation.

Code
CREATE OR REPLACE TRIGGER trg_new_feature
BEFORE INSERT ON new_table
DISABLE
BEGIN
-- Trigger logic here
END;
/

Replacing Objects (using OR REPLACE)

The OR REPLACE clause is used with CREATE statements (e.g., CREATE
PROCEDURE, CREATE FUNCTION, CREATE PACKAGE, CREATE VIEW, CREATE
TRIGGER) to modify an existing object without explicitly dropping and re-creating it. Syntax
Example (Procedure).

Dropping Objects (using DROP)
The DROP statement is used to permanently remove an object from the database.

Syntax Examples:
Procedure:
Code
DROP PROCEDURE my_procedure;

package.

Code
DROP PACKAGE my_package;

view.

Code
DROP VIEW my_view;

trigger.

Code
DROP TRIGGER my _trigger;

Procedures in PL/SQL
PL/SQL procedures are reusable code blocks that perform specific actions or logic
within a database environment. They consist of two main components such as the procedure
header which defines the procedure name & optional parameters and the procedure body
which contains the executable statements implementing the desired business logic.
The procedure contains two parts:
Procedure Header
e The procedure header includes the procedure name and optional parameter list.
o It is the first part of the procedure and specifies the name and parameters
Procedure Body
e The procedure body contains the executable statements that implement the specific
business logic.
« It can include declarative statements, executable statements, and exception-handling
statements
Create Procedures in PL/SQL
To create a procedure in PL/SQL, use the CREATE PROCEDURE command:
Syntax:
CREATE PROCEDURE procedure_name
@Parameterl INT,
@Parameter2 VARCHAR(50) = NULL,
@ReturnValue INT OUTPUT
AS
BEGIN
END
GO
Parameters in Procedures
In PL/SQL, parameters are used to pass values into procedures. There are three types of
parameters used in procedures:
IN parameters
e Used to pass values into the procedure

e Read-only inside the procedure

o Can be a variable, literal value, or expression in the calling statement.
OUT parameters

e Used to return values from the procedure to the calling program

e Read-write inside the procedure

e Must be a variable in the calling statement to hold the returned value
IN OUT parameters

e Used for both passing values into and returning values from the procedure
o Read-write inside the procedure

e Must be a variable in the calling statement

Modify Procedures in PL/SQL

To modify an existing procedures in PL/SQL use the ALTER PROCEDURE command:
Syntax

ALTER PROCEDURE Syntax is:

SET ANSI_NULLS ON

SET QUOTED_IDENTIFIER ON

GO

ALTER PROCEDURE procedure_name

@Parameterl INT,

@Parameter2 VARCHAR(50) = NULL,

@ReturnValue INT OUTPUT

AS

BEGIN

-- Query

END

GO

Drop Procedure in PL/SQL

To drop a procedure in PL/SQL use the DROP PROCEDURE command
Syntax:

DROP PROCEDURE procedure_name

PL/SQL DROP PROCEDURE Example

In this example, we will delete a procedure in PL/SQL

DROP PROCEDURE GetStudentDetails

Functions in PL/SQL

A PL/SQL function is a named, self-contained block of code that performs a specific
task and always returns a single value. Functions can accept zero or more input parameters and
are typically used to compute and return a result. They can be called from SQL statements,

other PL/SQL blocks, or even within packages.
Syntax Example:

Code
CREATE OR REPLACE FUNCTION calculate_square (p_number IN NUMBER)
RETURN NUMBER
IS
v_square NUMBER;
BEGIN
v_square := p_number * p_number;
RETURN v_square;
END;
/

PL/SQL Packages

PL/SQL packages are a way to organize and encapsulate
related procedures, functions, variables, triggers, and other PL/SQL items into a single
item. Packages provide a modular approach to write and maintain the code. It makes it easy
to manage large codes.

A package is compiled and then stored in the database, which then can be shared with
many applications. The package also has specifications, which declare an item to be public
or private. Public items can be referenced from outside of the package.

A PL/SQL package is a collection of related Procedures, Functions, Variables, and
other elements that are grouped for Modularity and Reusability.

Key Benefits of Using PL/SQL Packages

The needs of the Packages are described below:

e Modularity: Packages provide a modular structure, allowing developers to organize and
manage code efficiently.

e Code Reusability: Procedures and functions within a package can be reused across

multiple programs, reducing redundancy.

o Private Elements: Packages support private procedures and functions, limiting access to
certain code components.
o Encapsulation: Packages encapsulate related logic, protecting internal details and
promoting a clear interface to other parts of the code.
Structure of a PL/SQL Package
A PL/SQL package consists of two parts:
1. A package Specification
2. A package Body
1. Package Specification
The package specification declares the public interface of the package. It includes
declarations of procedures, functions, variables, cursors, and other constructs that are
meant to be accessible from outside the package. The specification is like a header file that
defines what a package can do.
Example of Package Specification:
CREATE OR REPLACE PACKAGE my_package AS
PROCEDURE my_procedure(p_paraml NUMBER);
FUNCTION calculate_sum(x NUMBER, y NUMBER) RETURN NUMBER;
-- Other declarations...
END my_package;
2. Package Body
The package body contains the implementation of the details of the package. It
includes the coding of the procedures or functions which are decalared in the package
specification. The body can also contain private variables and procedures that are not
exposed to outside the code.
Example of Package Body:
CREATE OR REPLACE PACKAGE BODY my_package AS
PROCEDURE my_procedure(p_paraml NUMBER) IS
BEGIN
-- Implementation code...

END my_procedure;

FUNCTION calculate_sum(x NUMBER, y NUMBER) RETURN NUMBER IS
BEGIN

-- Implementation code...

END calculate_sum;

-- Other implementation details...
END my_package;

Once your create your package in above two steps, you can use it in PL/SQL codes.

This allows for modular programming, code reuse, and better maintenance of the the code
base.
Using Oracle PL/SQL Packages in Code
DECLARE

result NUMBER,;
BEGIN

-- Call a procedure from the package

my_package.my_procedure(42);

-- Call a function from the package

result := my_package.calculate_sum(10, 20);

-- Other code...
END;

	PL/SQL
	Key Features of PL/SQL
	Structure of PL/SQL Block
	PL/SQL Identifiers
	1. Variables in PL/SQL

	Declare a Variable in PL/SQL
	Common Methods for Declaring Variables in PL/SQL
	1. Using Declare Variables in PL/SQL
	Syntax:
	Example:

	2. Using Initializing Variables in PL/SQL
	a. Initializing during declaration
	b. Initialization After Declaration

	3. Using Variable Scope in PL/SQL
	Example:

	4. Using Variable Attributes (%TYPE and %ROWTYPE)
	1. Using %TYPE Attribute
	2. Using %ROWTYPE Attribute

	Executable Commands Section in a PL/SQL Block
	Structure of a PL/SQL Block
	Executable Section
	1. SQL Statements
	2. Procedural Statements
	3. Function and Procedure Calls
	4. Input and Output Operations

	Importance of the Executable Section

	Exception Handling in PL/SQL
	Types of Exception Handling
	1. System-Defined Exceptions
	1. Named System Exception:
	2. Unnamed System Exception:

	2. User Define Exception

	PL/SQL Triggers
	Types of Triggers in PL/SQL with Examples
	1. Row-Level Triggers
	A. Before Row Triggers
	B. After-Row Triggers

	2. Statement-Level Triggers
	A. Before Statement Triggers
	B. After Statement Triggers

	3. Database-Level Triggers
	A. Startup Triggers

	Procedures in PL/SQL
	The procedure contains two parts:
	Procedure Header
	Procedure Body

	Create Procedures in PL/SQL
	Parameters in Procedures
	IN parameters
	OUT parameters
	IN OUT parameters

	Modify Procedures in PL/SQL
	Drop Procedure in PL/SQL
	PL/SQL DROP PROCEDURE Example

	PL/SQL Packages
	Key Benefits of Using PL/SQL Packages
	Structure of a PL/SQL Package
	1. Package Specification
	Example of Package Specification:

	2. Package Body
	Example of Package Body:

	Using Oracle PL/SQL Packages in Code

