UNIT-V
CHAPTER-I
COMPUTER-AIDED SOFTWARE ENGINEERING (CASE)

computer aided software engineering (CASE) and how use of CASE tools help to improve
software development effort and maintenance effort. Software is becoming the costliest
component in any computer installation. Even though hardware prices keep dropping like never
and falling below even the most optimistic expectations, software prices are becoming costlier
due to increased manpower costs.

CASE AND ITS SCOPE

We first need to define what is a CASE tool and what is a CASE environment. A CASE tool is a
generic term used to denote any form of automated support for software engineering. In a more
restrictive sense, a CASE tool can mean any tool used to automate some activity associated with
software development.

Many CASE tools are now available. Some of these tools assist in phase-related tasks such as
specification, structured analysis, design, coding, testing, etc. and others to non-phase activities
such as project management and configuration management.

The primary objectives in using any CASE tool are:

e Toincrease productivity.
e To help produce better quality software at lower cost.

CASE ENVIRONMENT

Although individual CASE tools are useful, the true power of a tool set can be realised only when
these set of tools are integrated into a common framework or environment. If the different CASE
tools are not integrated, then the data generated by one tool would have to input to the other tools.

This may also involve format conversions as the tools developed by different vendors are likely to
use different formats. This results in additional effort of exporting data from one tool and
importing to another. Also, many tools do not allow exporting data and maintain the data in
proprietary formats.

CASE tools are characterised by the stage or stages of software development life cycle on which
they focus. Since different tools covering different stages share common information, it is
required that they integrate through some central repository to have a consistent view of
information associated with the software.

This central repository is usually a data dictionary containing the definition of all composite and
elementary data items. Through the central repository all the CASE tools in a CASE environment
share common information among themselves. Thus, a CASE environment facilitates the
automation of the step-by-step methodologies for software development. In contrast a CASE
environment, a programming environment is an integrated collection of tools to support only the
coding phase of software development.

The tools commonly integrated in a programming environment are atext editor, a compiler, and a
debugger. The different tools are integrated to the extent that once the compiler detects an error,
the editor takes automatically goes to the statements in error and the error statements are
highlighted.

Examples of popular programming environments are Turbo C environment, Visual Basic, Visual
C++, etc. A schematic representation of a CASE environment is shown in Figure 12.1.

The standard programming environments such as Turbo C, Visual C++, etc. come equipped with a
program editor, compiler, debugger, linker, etc. All these tools are integrated. If you click on an
error reported by the compiler, not only does it take you into the editor, but also takes the cursor to
the specific line or statement causing the error.

Coding support Project
activities management
facilities
Consistency and
cumpletcr.wss Prototyping
analysis
Configuration

/ management
Central facilities

Repository
Document 2 >
generation
o Structured
o diagram facilities
Structured

analysis facilities

Query and report
facilities

Transfer facilities
in different
formats

FIGURE 12.1 A CASE environment.

Benefits of CASE

Several benefits accrue from the use of a CASE environment or even isolated CASE tools.

Let us examine some of these benefits:

A key benefit arising out of the use of a CASE environment is cost saving through all
developmental phases. Different studies carry out to measure the impact of CASE, put the effort
reduction between 30 per cent and 40 per cent.

Use of CASE tools leads to considerable improvements in quality. This is mainly due to the
facts that one can effortlessly iterate through the different phases of software development, and
the chances of human error is considerably reduced.

CASE tools help produce high quality and consistent documents. Since the important data
relating to a software product are maintained in a central repository, redundance in the stored
data is reduced, and therefore, chances of inconsistent documentation are reduced to a great
extent.

CASE tools take out most of the drudgery in a software engineer’s work. For example, they
need not check meticulously the balancing of the DFDs, but can do it effortlessly through the
press of a button.

CASE tools have led to revolutionary cost saving in software maintenance efforts. This arises
not only due to the tremendous value of a CASE environment in traceability and consistency
checks, but also due to the systematic information capture during the various phases of software
development as a result of adhering to a CASE environment.

Introduction of a CASE environment has an impact on the style of working of a company, and

makes it oriented towards the structured and orderly approach.

CASE SUPPORT IN SOFTWARE LIFE CYCLE

Let us examine the various types of support that CASE provides during the different phases of
a software life cycle. CASE tools should support a development methodology, help enforce the
same, and provide certain amount of consistency checking between different phases. Some of
the possible support that CASE tools usually provide in the software development life cycle
are discussed below.

Prototyping Support

We have already seen that prototyping is useful to understand the requirements of complex
software products, to demonstrate a concept, to market new ideas, and so on.

The prototyping CASE tool’s requirements are as follows:
"1 Define user interaction.

1 Define the system control flow.

. Store and retrieve data required by the system.

_ Incorporate some processing logic.

There are several standalone prototyping tools. But a tool that integrates with the data
dictionary can make use of the entries in the data dictionary, help in populating the data
dictionary and ensure the consistency between the design data and the prototype. A good
prototyping tool should support the following features:

1 Since one of the main uses of a prototyping CASE tool is graphical user interface (GUI)
development, a prototyping CASE tool should support the user to create a GUI using a graphics
editor. The user should be allowed to define all data entry forms, menus and controls.

" It should integrate with the data dictionary of a CASE environment.

1 If possible, it should be able to integrate with external user defined modules written in C or
some popular high level programming languages.

7 The user should be able to define the sequence of states through which a created prototype
can run. The user should also be allowed to control the running of the prototype.

7 The run time system of prototype should support mock up run of the actual system and
management of the input and output data.

Structured Analysis and Design

Several diagramming techniques are used for structured analysis and structured design. CASE
tool should support one or more of the structured analysis and design technique. The CASE
tool should support effortlessly drawing analysis and design diagrams. The CASE tool should
support drawing fairly complex diagrams and preferably through a hierarchy of levels. It should
provide easy navigation through different levels and through design and analysis.

The tool must support completeness and consistency checking across the design and analysis
and through all levels of analysis hierarchy. Wherever it is possible, the system should disallow
any inconsistent operation, but it may be very difficult to implement such a feature. Whenever
there is heavy computational load while consistency checking, it should be possible to
temporarily disable consistency checking.

Code Generation

As far as code generation is concerned, the general expectation from a CASE tool is quite low.
A reasonable requirement is traceability from source file to design data. More pragmatic
support expected from a CASE tool during code generation phase are the following:

1 The CASE tool should support generation of module skeletons or templates in one or more
popular languages. It should be possible to include copyright message, brief description of the
module, author name and the date of creation in some selectable format.

1 The tool should generate records, structures, class definition automatically from the contents
of the data dictionary in one or more popular programming languages.

1 It should generate database tables for relational database management systems.

_ The tool should generate code for user interface from prototype definition for X window and
MS window-based applications.

Test CASE Generator

The CASE tool for test case generation should have the following features:
1 It should support both design and requirement testing.

" It should generate test set reports in ASCII format which can be directly imported into the
test plan document.

OTHER CHARACTERISTICS OF CASE TOOLS

The characteristics listed in this section are not central to the functionality of CASE tools but
significantly enhance the effectivity and usefulness of CASE tools

Hardware and Environmental Requirements

In most cases, it is the existing hardware that would place constraints upon the CASE tool
selection. Thus, instead of defining hardware requirements for a CASE tool, the task at hand
becomes to fit in an optimal configuration of CASE tool in the existing hardware capabilities.
Therefore, we have to emphasise on selecting the most optimal CASE tool configuration for a
given hardware configuration.

The heterogeneous network is one instance of distributed environment and we choose this for
illustration as it is more popular due to its machine independent features. The CASE tool
implementation in heterogeneous network makes use of client-server paradigm. The multiple
clients which run different modules access data dictionary through this server.

The data dictionary server may support one or more projects. Though it is possible to run many
servers for different projects but distributed implementation of data dictionary is not common.

The tool set is integrated through the data dictionary which supports multiple projects, multiple
users working simultaneously and allows to share information between users and projects. The
data dictionary provides consistent view of all project entities, e.g., a data record definition and
its entity-relationship diagram be consistent. The server should depict the per-project logical
view of the data dictionary. This means that it should allow backup/restore, copy, cleaning part
of the data dictionary, etc.

The tool should work satisfactorily for maximum possible number of users working
simultaneously. The tool should support multi-windowing environment for the users. This is
important to enable the users to see more than one diagram at a time. It also facilitates
navigation and switching from one part to the other.

Documentation Support

The deliverable documents should be organized graphically and should be able tom incorporate
text and diagrams from the central repository. This helps in producing up-to date
documentation. The CASE tool should integrate with one or more of the commercially
available desk-top publishing packages. It should be possible to export text, graphics, tables,
data dictionary reports to the DTP package in standard forms such as PostScript.

Project Management

It should support collecting, storing, and analysing information on the software project’s
progress such as the estimated task duration, scheduled and actual task start, completion date,
dates and results of the reviews, etc.

External Interface

The tool should allow exchange of information for reusability of design. The information which
is to be exported by the tool should be preferably in ASCII format and support open
architecture. Similarly, the data dictionary should provide a programming interface to access
information. It is required for integration of custom utilities, building new techniques, or
populating the data dictionary.

Reverse Engineering Support

The tool should support generation of structure charts and data dictionaries from the existing
source codes. It should populate the data dictionary from the source code. If the tool is used for
re-engineering information systems, it should contain conversion tool from indexed sequential
file structure, hierarchical and network database to relational database systems.

Data Dictionary Interface

The data dictionary interface should provide view and update access to the entities and relations
stored in it. It should have print facility to obtain hard copy of the viewed screens. It should
provide analysis reports like cross-referencing, impact analysis, etc. Ideally, it should support
a query language to view its contents.

Tutorial and Help

The application of CASE tool and thereby its success depends on the users’ capability to
effectively use all the features supported. Therefore, for the uninitiated users, a tutorial is very
important. The tutorial should not be limited to teaching the user interface part only, but should
comprehensively cover the following points:

1 The tutorial should cover all techniques and facilities through logically classified sections.
1 The tutorial should be supported by proper documentation.

TOWARDS SECOND GENERATION CASE TOOL

An important feature of the second-generation CASE tool is the direct support of any adapted
methodology. This would necessitate the function of a CASE administrator for every
organisation, who can tailor the CASE tool to a particular methodology. In addition, we may
look forward to the following features in the second-generation CASE tool:

Intelligent diagramming support: The fact that diagramming techniques are useful for
system analysis and design is well established. The future CASE tools would provide help to
aesthetically and automatically layout the diagrams.

Integration with implementation environment: The CASE tools should provide integration
between design and implementation.

Data dictionary standards: The user should be allowed to integrate many development tools
into one environment. It is highly unlikely that any one vendor will be able to deliver a total
solution. Moreover, a preferred tool would require tuning up for a particular system. Thus, the
user would act as a system integrator. This is possible only if some standard on data dictionary
emerges.

Customisation support: The user should be allowed to define new types of objects and
connections. This facility may be used to build some special methodologies. Ideally it should
be possible to specify the rules of a methodology to a rule engine for carrying out the necessary
consistency checks.

ARCHITECTURE OF A CASE ENVIRONMENT

The architecture of a typical modern CASE environment is shown diagrammatically in Figure
12.2. The important components of a modern CASE environment are user interface, tool set,
object management system (OMS), and a repository. We have already seen the characteristics
of the tool set. Let us examine the other components of a CASE environment.

User interface

The user interface provides a consistent framework for accessing the different tools thus
making it easier for the users to interact with the different tools and reducing the overhead of
learning how the different tools are used.

Object management system and repository

Different case tools represent the software product as a set of entities such as specification,
design, text data, project plan, etc. The object management system maps these logical entities
into the underlying storage management system (repository).

The commercial relational database management systems are geared towards supporting large
volumes of information structured as simple relatively short records. There are a few types of
entities but large number of instances. By contrast, CASE tools create a large number of entities
and relation types with perhaps a few instances of each.

Thus, the object management system takes care of appropriately mapping these entities into
the underlying storage management system.

User interface

Tool set

Object management system (OMS)

——_ =

FIGURE 12.2 Architecture of a modern CASE environment.

UNIT-V
CHAPTER-II
SOFTWARE MAINTENANCE

Software maintenance denotes any changes made to a software product after it has been
delivered to the customer.

Maintenance is inevitable for almost any kind of product. However, most products need
maintenance due to the wear and tear caused by use. For example, a car tyre wears out due to
use.

On the other hand, software products do not need maintenance on this count, but need
maintenance to correct errors, enhance features, port to new platforms, etc.

CHARACTERISTICS OF SOFTWARE MAINTENANCE

Software maintenance is becoming an important activity of a large number of organisations.
This is no surprise, given the rate of hardware obsolescence, the immortality of a software
product per se, and the demand of the user community to see the existing software products
run on newer platforms, run in newer environments, and/or with enhanced features.

When the hardware platform changes, and a software product performs some low-level
functions, maintenance is necessary. Also, whenever the support environment of a software
product changes, the software product requires rework to cope up with the newer interface.

For instance, a software product may need to be maintained when the operating system changes
or the software needs to run over hand held devices. Thus, every software product continues to
evolve after its development through maintenance efforts.

Types of Software Maintenance

There are three types of software maintenance, which are described as follows:

Corrective: Corrective maintenance of a software product is necessary to overcome the
failures observed while the system is in use.

Adaptive: A software product might need maintenance when the customers need the product
to run on new platforms, on new operating systems, or when they need the product to interface
with new hardware or software.

Perfective: A software product needs maintenance to support any new features that the users
may want it to support, to change different functionalities of the system according to customer
demands, or to enhance the performance of the system.

Characteristics of Software Evolution

Lehman and Belady studied the characteristics of evolution of several software products
[1980]. They expressed their observations in the form of laws. Their important laws are
presented in the following subsection. But a word of caution here is that these are
generalisations and may not be applicable to specific cases. Further, most of their observations

concern large software projects and may not be appropriate for the maintenance and evolution
of very small products.

Lehman’s first law:

A software product must change continually or become progressively less useful. Every
software product continues to evolve after its development through maintenance efforts.
Larger products stay in operation for longer times because of higher replacement costs and
therefore tend to incur higher maintenance efforts.

This law clearly shows that every product irrespective of how well designed must undergo
maintenance.

In fact, when a product does not need any more maintenance, it is a sign that the product is
about to be retired/discarded. This is in contrast to the common intuition that only badly
designed products need maintenance. In fact, good products are maintained and bad products
are thrown away.

Lehman’s second law:

The structure of a program tends to degrade as more and more maintenance is carried out on
it. The reason for the degraded structure is that usually maintenance activities result in patch
work. It is rarely the case that members of the original development team are part of the
maintenance team.

The maintenance team, therefore, often has a partial and inadequate understanding of the
architecture, design, and code of the software. Therefore, any modifications tend to be ugly and
more complex than they should be. Due to quick-fix solutions, in addition to degradation of
structure, the documentations become inconsistent and become less helpful as more and more
maintenance is carried out.

Lehman’s third law:

Over a program’s lifetime, its rate of development is approximately constant. The rate of

development can be quantified in terms of the lines of code written or modified. Therefore, this
law states that the rate at which code is written or modified is approximately the same during
development and maintenance.

Special Problems Associated with Software Maintenance

Software maintenance work currently is typically much more expensive than what it should be
and takes more time than required. The reasons for this situation are the following:

Software maintenance work in organisations is mostly carried out using ad hoc techniques.

The primary reason being that software maintenance is one of the most neglected areas of
software engineering. Even though software maintenance is fast becoming an important area
of work for many companies as the software products of yester years age, still software
maintenance is mostly being carried out as fire-fighting operations, rather than through
systematic and planned activities.

Software maintenance has a very poor image in industry. Therefore, an organisation often
cannot employ bright engineers to carry out maintenance work. Even though maintenance
suffers from a poor image, the work involved is often more challenging than development

work. During maintenance it is necessary to thoroughly understand someone else’s work, and
then carry out the required modifications and extensions.

Another problem associated with maintenance work is that the majority of software products

needing maintenance are legacy products. Though the word legacy implies “aged” software,

but there is no agreement on what exactly is a legacy system. It is prudent to define a legacy
system as any software system that is hard to maintain.

The typical problems associated with legacy systems are poor documentation, unstructured
(spaghetti code with ugly control structure), and lack of personnel knowledgeable in the
product.

Many of the legacy systems were developed long time back. But, it is possible that a recently
developed system having poor design and documentation can be considered to be a legacy
system.

SOFTWARE REVERSE ENGINEERING

Software reverse engineering is the process of recovering the design and the requirements
specification of a product from an analysis of its code. The purpose of reverse engineering is
to facilitate maintenance work by improving the understandability of a system and to produce
the necessary documents for a legacy system.

Reverse engineering is becoming important, since legacy software products lack proper
documentation, and are highly unstructured. Even well-designed products become legacy
software as their structure degrades through a series of maintenance efforts.

The first stage of reverse engineering usually focuses on carrying out cosmetic changes to the
code to improve its readability, structure, and understandability, without changing any of its
functionalities. A way to carry out these cosmetic changes is shown schematically in Figure
13.1.

A program can be reformatted using any of the several available Pretty Printer programs which
layout the program neatly. Many legacy software products are difficult to comprehend with

complex control structure and unthoughtful variable names. Assigning meaningful variable
names is important that meaningful variable names is the most helpful code documentation.
All variables, data structures, and functions should be assigned meaningful names wherever
possible.

Complex nested conditionals in the program can be replaced by simpler conditional statements
or whenever appropriate by case statements.

Requirements specification

/

Design

/

Module specification

/

Code

FIGURE 13.1 A process model for reverse engineering.

After the cosmetic changes have been carried out on a legacy software, the process of extracting
the code, design, and the requirements specification can begin. These activities are
schematically shown in Figure 13.2. In order to extract the design, a full understanding of the
code is needed. Some automatic tools can be used to derive the data flow and control flow
diagram from the code. The structure chart (module invocation sequence and data interchange
among modules) should also be extracted. The SRS document can be written once the full code
has been thoroughly understood and the design extracted.

l

Reformat program _| Assign meaningful Simplify
names conditions
v
Simplify
processing Remove GOTOs

FIGURE 13.2 Cosmetic changes carried out before reverse engineering.

SOFTWARE MAINTENANCE PROCESS MODELS

Before discussing process models for software maintenance, we need to analyse various
activities involved in a typical software maintenance project. The activities involved in a
software maintenance project are not unique and depend on several factors such as:

0] the extent of modification to the product required,

(i) (i) the resources available to the maintenance team,

(i) (i) the conditions of the existing product (e.g., how structured it is, how well
documented it is, etc.), (iii) the expected project risks, etc.

When the changes needed to a software product are minor and straightforward, the code can
be directly modified and the changes appropriately reflected in all the documents.

However, more elaborate activities are required when the required changes are not so trivial.
Usually, for complex maintenance projects for legacy systems, the software process can be
represented by a reverse engineering cycle followed by a forward engineering cycle with an
emphasis on as much reuse as possible from the existing code and other documents.

Since the scope (activities required) for different maintenance projects vary widely, no single
maintenance process model can be developed to suit every kind of maintenance project.
However, two broad categories of process models can be proposed

First model

The first model is preferred for projects involving small reworks where the code is changed
directly and the changes are reflected in the relevant documents later. This maintenance process
is graphically presented in Figure 13.3. In this approach, the project starts by gathering the
requirements for changes.

The requirements are next analysed to formulate the strategies to be adopted for code change.
At this stage, the association of at least a few members of the original development team goes
a long way in reducing the cycle time, especially for projects involving unstructured and
inadequately documented code.

The availability of a working old system to the maintenance engineers at the maintenance site
greatly facilitates the task of the maintenance team as they get a good insight into the working
of the old system and also can compare the working of their modified system with the old
system. Also, debugging of the re-engineered system becomes easier as the program traces of
both the systems can be compared to localise the bugs.

Gather change
requirements

|

Analvse change
regquirements

'

Devise code change
strategies

b

Apply code change
atrategies to the old code

/\

Update documents Integrate and test

FIGURE 13.3 Maintenance process model 1.
Second model

The second model is preferred for projects where the amount of rework required is significant.
This approach can be represented by a reverse engineering cycle followed by a forward
engineering cycle. Such an approach is also known as software re-engineering. This process
model is depicted in Figure 13.4.

The reverse engineering cycle is required for legacy products. During the reverse engineering,
the old code is analysed (abstracted) to extract the module specifications. The module

specifications are then analysed to produce the design. The design is analysed (abstracted) to
produce the original requirements specification. The change requests are then applied to this
requirements specification to arrive at the new requirements specification.

At this point a forward engineering is carried out to produce the new code. At the design,
module specification, and coding a substantial reuse is made from the reverse engineered
products. An important advantage of this approach is that it produces a more structured design
compared to what the original product had, produces good documentation, and very often

results in increased efficiency. The efficiency improvements are brought about by a more effi

cient design. However, this approach is more costly than the first approach. An empirical study
indicates that process 1 is preferable when the amount of rework is no more than 15 per cent
(see Figure 13.5).

Change requirements

Requirements
specification

New requirements

specification
Reverse p quwar'd
engineering / \ engineering
Design Design
Module :\"I_Udlll{:_!
specification M apecification
Code Code

FIGURE 13.4 Maintenance process model 2.

Besides the amount of rework, several other factors might affect the decision regarding using
process model 1 over process model 2 as follows:

1 Re-engineering might be preferable for products which exhibit a high failure rate.

71 Re-engineering might also be preferable for legacy products having poor design and code
structure.

Cost

| | | I
10 20 30 40

Percentage of rework

A

Empirical estimation of maintenance cost versus percentage rework.

ESTIMATION OF MAINTENANCE COST

We had earlier pointed out that maintenance efforts require about 60 per cent of the total life
cycle cost for a typical software product. However, maintenance costs vary widely from one
application domain to another. For embedded systems, the maintenance cost can be as much as
2 to 4 times the development cost.

Boehm [1981] proposed a formula for estimating maintenance costs as part of his COCOMO
cost estimation model. Boehm’s maintenance cost estimation is made in terms of a quantity
called the annual change traffic (ACT). Boehm defined ACT as the fraction of a software
product’s source instructions which undergo change during a typical year either through
addition or deletion.

(- l<LOCL1L| dod ' KLOCLIL'lulLd
KLOC

where, KLOC added is the total kilo lines of source code added during maintenance. KLOC
deleted is the total KLOC deleted during maintenance. Thus, the code that is changed, should
be counted in both the code added and code deleted.

total

The annual change traffic (ACT) is multiplied with the total development cost to arrive at the
maintenance cost:

Maintenance cost = ACT x Development cost

Most maintenance cost estimation models, however, give only approximate results because
they do not take into account several factors such as experience level of the engineers, and
familiarity of the engineers with the product, hardware requirements, software complexity, etc.

	CASE AND ITS SCOPE
	CASE ENVIRONMENT
	Benefits of CASE

	CASE SUPPORT IN SOFTWARE LIFE CYCLE
	Prototyping Support
	Structured Analysis and Design
	Code Generation
	Test CASE Generator

	OTHER CHARACTERISTICS OF CASE TOOLS
	Hardware and Environmental Requirements
	Documentation Support
	Project Management
	External Interface
	Reverse Engineering Support
	Data Dictionary Interface
	Tutorial and Help

	TOWARDS SECOND GENERATION CASE TOOL
	ARCHITECTURE OF A CASE ENVIRONMENT
	User interface
	Object management system and repository

	CHARACTERISTICS OF SOFTWARE MAINTENANCE
	Types of Software Maintenance
	Lehman’s first law:
	Lehman’s second law:
	Lehman’s third law:
	Special Problems Associated with Software Maintenance

	SOFTWARE REVERSE ENGINEERING
	SOFTWARE MAINTENANCE PROCESS MODELS
	First model
	Second model

	ESTIMATION OF MAINTENANCE COST

