UNIT-5 PL/SOL Notes
1. Introduction to PL/SQL

PL/SQL (Procedural Language/SQL) is Oracle’s procedural extension of SQL.
It combines SQL with programming constructs (variables, loops, conditions, exceptions,
etc.). It allows developers to write powerful programs that combine SQL queries with logic to
control how data is processed. With PL/SQL, complex operations, calculations, and error
handling can be performed directly within the Oracle database, making data manipulation more
efficient and flexible.

PL/SQL allows developers to:

o Execute SQL queries and DML commands inside procedural blocks.

o Define variables and perform complex calculations.

o Create reusable program units, such as procedures, functions, and triggers.

o Handle exceptions, ensuring the program runs smoothly even when errors occur.

> Features

Combines SQL and procedural logic

Reduces network traffic (runs on server)

Supports variables, loops, decision-making

Provides error handling (exceptions)

Allows creation of functions, procedures, triggers, packages

2. Structure of a PL/SQL Block

A PL/SQL block is the basic unit of a program. Blocks can be anonymous or named (like
procedure/function). PL/SQL extends SQL by adding constructs found in procedural
languages, resulting in a structural language that is more powerful than SQL. The basic unit in
PL/SQL is a block. All PL/SQL programs are made up of blocks, which can be nested within
each other.

| PL/saL Block |

Declare

Begin

Exception

End

Typically, each block performs a logical action in the program. A block has the following
structure:

DECLARE

declaration statements;

BEGIN

executable statements

EXCEPTIONS

exception handling statements

END;

PL/SQL code is written in blocks, which consist of three main sections:

e Declare section starts with DECLARE keyword in which variables, constants, records as
cursors can be declared which stores data temporarily. It basically consists definition of
PL/SQL identifiers. This part of the code is optional.

o Execution section starts with BEGIN and ends with END keyword. This is a mandatory
section and here the program logic is written to perform any task like loops and conditional
statements. It supports all DML commands, DDL commands and SQL*PLUS built-in
functions as well.

o Exception section starts with EXCEPTION keyword. This section is optional which
contains statements that are executed when a run-time error occurs. Any exceptions can be
handled in this section.

Example:
DECLARE
v_name VARCHAR2(20) :='Dhanasvi';
v_age NUMBER := 21;
BEGIN
DBMS_OUTPUT.PUT_LINE('Name: ' || v_name);
DBMS_OUTPUT.PUT_LINE('Age: ' || v_age);
END;

/
3. Elements of PL/SQL
Oracle uses a PL/SQL engine to processes the PL/SQL statements. PL/SQL includes

procedural language elements like conditions and loops. It allows declaration of constants and
variables, procedures and functions, types and variable of those types and triggers.

\ Element H Description H Example
\Variables ||Store data temporarily Iv_sal NUMBER := 50000;
Constants Fixed value ¢_bonus CONSTANT NUMBER := 5000;
Data Types CHAR, VARCHARZ, NUMBER, DATE,
BOOLEAN
IRecords | |Group of related fields I
ICursors ||Access query results row by row I
ISubprograms|[Functions & Procedures |

Example:

DECLARE
salary NUMBER := 20000;
bonus CONSTANT NUMBER := 3000;
total NUMBER;
BEGIN
total := salary + bonus;
DBMS_OUTPUT.PUT_LINE('Total Salary: ' || total);
END;

/
4. Operators in PL/SQL

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulation. PL/SQL language is rich in built-in operators and provides the following types of
operators.

Arithmetic Operators

Following table shows all the arithmetic operators supported by PL/SQL. Let us

assume holds 10 and holds 5, then —

Operator Description Example
+ Adds two operands A + B will give 15
- Subtracts second operand from the first A-Bwill give 5
* Multiplies both operands A * B will give 50
/ Divides numerator by de-numerator A/ B will give 2

**

Exponentiation operator, raises one operand to the power of other

A ** B will give 100000

Relational Operators

Relational operators compare two expressions or values and return a Boolean result. Following
table shows all the relational operators supported by PL/SQL. Let us assume holds 10

and holds 20, then —

Operator Description Example
_ Checks if the values of two operands are equal or not, if yes then condition (A=B)isnot
- becomes true. true.
Checks if the values of two operands are equal or not, if values are not equal (A'=B)is
then condition becomes true. true.
S Checks if the value of left operand is greater than the value of right operand, | (A > B) is not
if yes then condition becomes true. true.
< Checks if the yglue of left operand is less than the value of right operand, if (A<B)is true.
yes then condition becomes true.
o Checks if the value of left operand is greater than or equal to the value of (A>=B)is not
- right operand, if yes then condition becomes true. true.
« Checks if the value of left operand is less than or equal to the value of right | (A<=B) is
- operand, if yes then condition becomes true. true

Comparison Operators

Comparison operators are used for comparing one expression to another. The result is
always either TRUE, FALSE or[NULL.

NULL. Comparisons involving NULL values always
yield NULL.

Operator Description Example
1 M H 1 0 M
The LIKE operator compares a character, string, or It"Zara AN like 'Z% A—,' returns_la
. Boolean true, whereas, 'Nuha Ali
LIKE CLOB value to a pattern and returns TRUE if the S -
o like 'Z% A _i' returns a Boolean
value matches the pattern and FALSE if it does not. false =
The BETWEEN operator tests whether a value lies :Zt);;sl?razer; ge?vitggﬁeg :nznfozo
BETWEEN | in a specified range. x BETWEEN a AND b means ’
that x >= a2 and X <= b returns true, but x between 11 and
' 20 returns false.
The IN operator tests set membership. x IN (set) If x ="m' then, x in (4, 0", f:) -
IN . returns Boolean false but x in ('m’,
means that x is equal to any member of set. ot
n', '0") returns Boolean true.
The IS NULL operator returns the BOOLEAN value
IS NULL TRUE if its operand is NULL or FALSE if it is not If x ='m’, then 'x is null' returns

Boolean false.

Logical Operators

Following table shows the Logical operators supported by PL/SQL. All these operators
work on Boolean operands and produce Boolean results. Let us assume holds true

and holds fals e, then —

Operator Description Examples
and Called the logical AND operator. If both the operands are true then (Aand B) is
condition becomes true. false.
or Called the logical OR Operator. If any of the two operands is true then (AorB)is
condition becomes true. true.
not Called the logical NOT Operator. Used to reverse the logical state of its not (A and B)
operand. If a condition is true then Logical NOT operator will make it false. | is true.
Example:
DECLARE
a NUMBER := 10;
b NUMBER :=3;

result NUMBER;

BEGIN

result .= (a+b) *2;
DBMS_OUTPUT.PUT_LINE('Result: ' || result);

END;
/

5. Operator Precedence

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, X is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

The precedence of operators goes as follows: =, <, >, <=, >=, <>, 1= ~= = |S NULL, LIKE,

BETWEEN, IN.
Order Operator Description

1 ** Exponentiation
2 NOT Logical negation
3 * ! Multiplication, Division
4 +, - Addition, Subtraction
5 =, <>, >, < Comparison
6 AND Logical AND
7 OR Logical OR
Example:
DECLARE

X NUMBER :=5;

y NUMBER :=10;

z NUMBER := 2;

result NUMBER,;
BEGIN

result := x + y * z; -- multiplication first
DBMS_OUTPUT.PUT_LINE('Result: ' || result);
END;
/

Output — Result: 25

6. Control Structures

Control structures allow conditional or repeated execution.

PL/SQL Conditional Statements:

PL/SQL (Procedural Language/Structured Query Language) is an extension of SQL used
in Oracle databases to write procedural code. It includes various conditional statements that allow
developers to execute different blocks of code based on specific conditions. Decision-making
statements in programming languages decide the direction of the flow of program execution.
Conditional Statements available in PL/SQL are defined below:

https://www.geeksforgeeks.org/plsql/plsql-introduction/
https://www.geeksforgeeks.org/sql/sql-tutorial/

IF THEN

IF THEN ELSE

NESTED-IF-THEN

IF THEN ELSIF-THEN-ELSE Ladder
1. IF THEN

if then the statement is the simplest decision-making statement. It is used to decide whether a
certain statement or block of statements will be executed or not i.e if a certain condition is true
then a block of statement is executed otherwise not.

Syntax:

if condition then
-- do something
end if;

Here, condition after evaluation will be either true or false. if statement accepts boolean values
— if the value is true then it will execute the block of statements below it otherwise not. if and endif
consider as a block here.

Example:
declare
-- declare the values here

begin

if condition then
dbms_output.put_line(‘output’);

end if;

dbms_output.put_line(‘output2");
end;

Fals=

Tesht Expreaessicom

Baody of iF

15

Sttatermye=mit Jusi
e lowe IT

!

-- pl/sgl program to illustrate If statement

declare

numl number:= 10;

num2 number:= 20;

begin

if num1 > num2 then
dbms_output.put_line('numl1 small’);
end if;

dbms_output.put_line('l am Not in if');
end,

As the condition present in the if statement is false. So, the block below the if statement is not
executed. Output:

| am Not in if
2. IF THEN ELSE

The if statement alone tells us that if a condition is true it will execute a block of statements and
if the condition is false it won’t. But what if we want to do something else if the condition is false.
Here comes the else statement. We can use the else statement with if statement to execute a block
of code when the condition is false.

Syntax:-

if (condition) then
-- Executes this block if
-- condition is true

else
-- Executes this block if
-- condition is false

Test Expraession

False

Body of if Body of else

5

Statermemnt just
Erelows iT

!

-- pl/sgl program to illustrate If else statement
declare

Example:-

numl number:= 10;

num2 number:= 20;

begin

if numl1 < num2 then

dbms_output.put_line(‘i am in if block’);

ELSE

dbms_output.put_line('i am in else Block’);

end if;

dbms_output.put_line(‘'i am not in if or else Block");

end;

Output:-

i'min if Block

i'm not in if and not in else Block

The block of code following the else statement is executed as the condition present in the if
statement is false after calling the statement which is not in block(without spaces).

3. NESTED-IF-THEN

A nested if-then is an if statement that is the target of another if statement. Nested if-then
statements mean an if statement inside another if statement. Yes, PL/SQL allows us to nest if
statements within if-then statements. i.e, we can place an if then statement inside another if then
statement.

Syntax:-

if (conditionl) then
-- Executes when conditionl is true
if (condition2) then
-- Executes when condition2 is true
end if;
end if;

Mested
Test Expression

Test Expression

Body of if Body of Nested if Body of Nested else

k !

Statement just
below if

l

-- pl/sgl program to illustrate nested If statement
declare
numl number:= 10;

num2 number:= 20;
num3 number:= 20;

begin
if numl1 < num2 then
dbms_output.put_line('numl1 small num2');

if numl < num3 then
dbms_output.put_line("numl small num3 also’);
end if;

end if;

dbms_output.put_line(‘after end if");

end;

Output:-

numl small num2

numl small num3 also

after end if

4. IF THEN ELSIF-THEN-ELSE Ladder

Here, a user can decide among multiple options. The if then statements are executed from the
top down. As soon as one of the conditions controlling the if is true, the statement associated with
that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the
final else statement will be executed.

Syntax:-

if (condition) then
--statement

elsif (condition) then
--statement

else
--statement
endif

Flow Chart:-

Test
Expressiomn 1

Tesi
Expressiomn 2

Y

Statermemnit 1

Statermenic =2

Y

Statermeaemnt = —

! e Body of else P
-

-

Staterment Just baelowe
IT—elssilT

-

Example:-

-- pl/sql program to illustrate if-then-elif-then-else ladder
declare

numl number:= 10;

num2 number:= 20;

begin

if numl1 < num2 then
dbms_output.put_line('numl small’);
ELSEIF numl = num2 then
dbms_output.put_line(‘both equal’);
ELSE

dbms_output.put_line('num2 greater’);
end if;

dbms_output.put_line(‘after end if");
end;

Output:-

numl small

after end if

/

7. Iterative Control (Loops)
PL/SQL supports three types of loops:

(a) Basic LOOP

the Loop statement of PL/SQL with all its features like EXIT, EXIT WHEN, and Nested
Loop for example.

One of the key features in PL/SQL for controlling program flow is the LOOP statement.
The LOOP statement is a feature of PL/SQL that allows you to repeatedly execute a block of
code until a specified condition is satisfied.

Procedural Language/Structured Query Language (PL/SQL) provides a robust
environment for database programming, allowing developers to create powerful and efficient
code for Oracle databases.

Syntax
LOOP
-- Code block to be executed repeatedly
END LOOP;
EXIT Statement
The EXIT statement is used to break the loop whether the loop condition has been satisfied or
not. This statement is particularly useful when you want to terminate the loop based on certain
conditions within the loop block.

Syntax
LOOP
-- Code block
IF condition THEN
EXIT;
END IF;
END LOOP;

Example of PL/SQL LOOP with Conditional EXIT
In this example, we showcase the application of a PL/SQL LOOP construct with a conditional
EXIT statement. The code demonstrates a scenario where a loop iterates a specific block of code,
printing iteration numbers, and breaks out of the loop when a predefined condition is met.
DECLARE
counter NUMBER := 1,
BEGIN
LOOP
DBMS_OUTPUT.PUT_LINE('This is iteration number ' || counter);
IF counter = 3 THEN
EXIT;
END IF;
counter := counter + 1;
END LOOP;
END;
/
Output:
Statement processed.
This is iteration number 1
This is iteration number 2
This is iteration number 3

Explanation:

« Initially counter variable is set to 1.

o The LOOP statement repeatedly executes the code block within it.

e Inside the loop, DBMS_OUTPUT.PUT_LINE is used to print Iteration number (value of
counter).

e The counter is incremented by 1 in each iteration.

o |IF statement is executed when the value of counter will become 3 and The EXIT statement
is executed and loop stops.

EXIT WHEN Statement
The EXIT WHEN statement allows for a more concise way to specify the condition under
which a loop should exit. It checks the condition directly within the loop's syntax.

Syntax
LOOP

-- Code block

EXIT WHEN condition;
END LOOP;

Example of PL/SQL LOOP with EXIT WHEN

The purpose of this example is to show how to print "GeeksForGeeks" repeatedly using a
PL/SQL LOOP construct. With the help of the EXIT WHEN statement, the loop can be
controlled to end when a counter variable reaches a predetermined threshold.

DECLARE

counter NUMBER :=1; -- Initialization of the counter variable
BEGIN

-- Loop that prints "GeeksForGeeks" five times

LOOP

DBMS_OUTPUT.PUT_LINE('GeeksForGeeks";

counter := counter + 1; -- Increment the counter

EXIT WHEN counter > 5; -- Exit the loop when counter exceeds 5
END LOOP;

END;

/

Output:

Statement processed.
GeeksForGeeks
GeeksForGeeks
GeeksForGeeks
GeeksForGeeks
GeeksForGeeks

Explanation:

 Initially counter variable is set to 1.
e The LOOP statement repeatedly executes the code block within it.

e Inside the loop, DBMS_OUTPUT.PUT_LINE is used to print "GeeksForGeeks".

e The counter is incremented by 1 in each iteration.

e The EXIT WHEN statement is executed when the loop when the counter exceeds 5.
Nested Loops

Nested Loop is a Loop inside Loop and PL/SQL supports nested loops that allows you to have
multiple levels of iteration within a program. This is achieved by placing one or
more LOOP statements inside another. Each nested loop has its own set of loop control
statements.

Syntax
-- Outer Loop
LOOP
-- Code block
-- Inner Loop
LOOP
-- Inner loop code block
EXIT WHEN inner_condition;
END LOOP;
EXIT WHEN outer_condition;
END LOOP;

Example of PL/SQL Nested FOR Loop Simultaneous Iteration
In this example, we will create nested FOR loops that iterate over two ranges, demonstrating
simultaneous iteration.
DECLARE

outer_counter NUMBER := 1,

inner_counter NUMBER :=1;
BEGIN

FOR outer_counter IN 1..3 LOOP

DBMS_OUTPUT.PUT_LINE('Outer Loop - Iteration ' || outer_counter);

FOR inner_counter IN 1..2 LOOP
DBMS_OUTPUT.PUT_LINE('Inner Loop - Iteration ' || inner_counter);
END LOOP;
END LOOP;

END;
/
Output:
Statement processed.
Outer Loop - Iteration 1

Inner Loop - Iteration 1
Inner Loop - Iteration 2
Outer Loop - Iteration 2
Inner Loop - Iteration 1
Inner Loop - Iteration 2
Outer Loop - Iteration 3
Inner Loop - Iteration 1
Inner Loop - Iteration 2

Explanation:

e There are two nested loops

e The outer FOR loop (FOR outer_counter IN 1..3 LOOP) runs three times.

e Inside the outer FOR loop, there is an inner FOR loop (FOR inner_counter IN 1..2
LOOP) that runs two times for each iteration of the outer loop.

e DBMS _OUTPUT.PUT_LINE statements is used to print output.

/

8. Cursors

A cursor allows processing query results row by row. he cursor is used to retrieve data one
row at a time from the results set, unlsike other SOL commands that operate on all rows at once.
Cursors update table records in a singleton or row-by-row manner.

The Data that is stored in the Cursor is called the Active Data Set. Oracle DBMS has another
predefined area in the main memory Set, within which the cursors are opened. Hence the size of
the cursor is limited by the size of this pre-defined area.

Cursor Functions

Active Set

7369 SMITH CLERK
7566 JONES MANAGER

i> 7788 SCOTT ANALYST Current row
7876 ADAMS CLERK

7902 FORD ANALYST

[Cursor

Cursor Actions
Key actions involved in working with cursors in PL/SQL are:

1. Declare Cursor: A cursor is declared by defining the SQL statement that returns a result
set.

2. Open: A Cursor is opened and populated by executing the SQL statement defined by the
cursor.

3. Fetch: When the cursor is opened, rows can be fetched from the cursor one by one or in a

block to perform data manipulation.

Close: After data manipulation, close the cursor explicitly.

Deallocate: Finally, delete the cursor definition and release all the system resources

associated with the cursor.

ok~

Types

Calrps)ors are classified depending on the circumstances in which they are opened.

Implicit cursor: if the oracle engine opened a cursor for its internal processing it is known as an
implicit cursor. It is created "automatically” for the user by oracle when a query is executed and is
simpler to code.

Explicit cursor: a cursor can also be opened for processing data through a pl/sgl block, on
demand. Such a user-defined cursor is known as an explicit cursor.

https://www.geeksforgeeks.org/sql/sql-ddl-dql-dml-dcl-tcl-commands/

1. Implicit Cursor — Automatically created by Oracle for single-row queries.
2. Explicit Cursor — Declared by the user for multi-row queries.

Explicit Cursor Example

DECLARE
CURSOR emp_cur IS SELECT empno, ename FROM emp;
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
BEGIN
OPEN emp_cur;
LOOP
FETCH emp_cur INTO v_empno, v_ename;
EXIT WHEN emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(Emp No: ' || v_empno || ', Name: ' || v_ename);
END LOOP;
CLOSE emp_cur;
END;
/

9. Procedure
A procedure is a named block that performs
It may accept parameters but does not return a value.

Syntax
CREATE OR REPLACE PROCEDURE proc_name (paraml IN datatype)
IS
BEGIN
statements;
END;
/

Example
CREATE OR REPLACE PROCEDURE greet_user(name VARCHAR?2)
IS
BEGIN
DBMS_OUTPUT.PUT_LINE('Hello ' || name || '1");
END;
/
EXEC greet_user('Lavanya');

10. Function
A function is similar to a procedure but returns a value.

Syntax

CREATE OR REPLACE FUNCTION func_name (param IN datatype)
RETURN datatype
IS
BEGIN
RETURN value;
END;
/

Example

CREATE OR REPLACE FUNCTION square_num(n NUMBER)
RETURN NUMBER

IS

BEGIN

a

task.

RETURN n * n;
END;
/
BEGIN
DBMS_OUTPUT.PUT_LINE('Square: ' || square_num(6));
END;

/
11. Packages

A package groups related procedures, functions, variables, cursors together.

Two Parts:

1. Package Specification — Declaration
2. Package Body — Implementation

Example

CREATE OR REPLACE PACKAGE math_pack IS
FUNCTION add_num(a NUMBER, b NUMBER) RETURN NUMBER;
PROCEDURE show_sum(a NUMBER, b NUMBER);

END math_pack;

/

CREATE OR REPLACE PACKAGE BODY math_pack IS
FUNCTION add_num(a NUMBER, b NUMBER) RETURN NUMBER IS
BEGIN
RETURN a + b;
END;

PROCEDURE show_sum(a NUMBER, b NUMBER) IS
BEGIN
DBMS_OUTPUT.PUT_LINE('Sum: || (a + b));
END;
END math_pack;
/
BEGIN
DBMS_OUTPUT.PUT_LINE(‘Addition: ' || math_pack.add_num(10, 5));
math_pack.show_sum(7, 3);
END;
/

12. Exception Handling
Exceptions handle errors gracefully in PL/SQL.
Types

1. Predefined Exceptions (e.g., NO_DATA_FOUND, ZERO_DIVIDE)
2. User-defined Exceptions

Predefined Example

DECLARE
num NUMBER := 10;
denom NUMBER := 0;
result NUMBER;
BEGIN
result := num / denom;

EXCEPTION
WHEN ZERO_DIVIDE THEN
DBMS_OUTPUT.PUT_LINE(Error: Cannot divide by zero');
END;
/

User-Defined Exception Example

DECLARE
age NUMBER := 15;
ex_underage EXCEPTION;
BEGIN
IF age < 18 THEN
RAISE ex_underage;
END IF;
EXCEPTION
WHEN ex_underage THEN
DBMS_OUTPUT.PUT_LINE('Access denied: Age must be 18 or above.");
END;
/

13. Triggers

A trigger executes automatically when a specified database event occurs (INSERT,
UPDATE, DELETE).

PL/SQL stands for Procedural Language/ Structured Query Language. It has block structure
programming features.PL/SQL supports SQL queries. It also supports the declaration of the
variables, control statements, Functions, Records, Cursor, Procedure, and
Triggers.PL/SQL contains a declaration section, execution section, and exception-handling
section. Declare and exception handling sections are optional.

Syntax:

Declaration section
BEGIN

Execution section
EXCEPTION

Exception section
END;

PL/SQL Triggers

PL/SQL triggers are block structures and predefined programs invoked
automatically when some event occurs. They are stored in the database and invoked
repeatedly in a particular scenario. There are two states of the triggers, they
are enabled and disabled. When the trigger is created it is enabled. CREATE
TRIGGER statement creates a trigger.

A triggering event is specifiekd on a table, a view, a schema, or a
database.BEFORE and AFTER are the trigger Timing points.DML triggers are created on a
table or view, and triggers. Crossedition triggers are created on Edition-based redefinition.
System Triggers are created on schema or database using DDL or database operation
statements. It is applied on new data only ,it don't affect existing data.

They are associated with response-based events such as a
o Database Definition Language statements such as CREATE, DROP or ALTER.
o Database Manipulation Language statements such as UPDATE, INSERT or DELETE.

https://www.geeksforgeeks.org/sql/sql-ddl-dql-dml-dcl-tcl-commands/

o Database operations such as LOGON, LOGOFF, STARTUP, and SHUTDOWN.

Why are Triggers important?

The importance of Triggers is:

o Automated Action: It helps to automate actions in response to events on table or views.

o Data integrity: Constraint can be applied to the data with the help of trigger.It is used to
ensure referential integrity.

o Consistency: It helps to maintain the consistency of the database by performing immediate
responses to specific events.

e Error handling: It helps in error handling by responding to the errors. For example, If
specific condition is not met it will provide an error message.

PL/SQL Trigger Structure
Triggers are fired on the tables or views which are in the database. Either table, view ,schema,

or a database are the basic requirement to execute a trigger. The trigger is specified first and then
the action statement are specified later.
Syntax:
CREATE OR REPLACE TRIGGER trigger_name
BEFORE or AFTER or INSTEAD OF //trigger timings
INSERT or UPDATE or DELETE // Operation to be performed
of column_name
on Table_name
FOR EACH ROW
DECLARE

Declaration section
BEGIN

Execution section
EXCEPTION

Exception section
END;
/
Query operation to be performed i.e INSERT,DELETE,UPDATE.
e CREATE [OR REPLACE] TRIGGER trigger_name is used to create a trigger or replace
the existing trigger.|
BEFORE | AFTER | INSTEAD OF specifies trigger timing.
INSERT | UPDATE | DELETE are the DML operations performed on table or views.
OF column_name specifies the column that would be updated.
ON table_name species the table for the operation.
FOR EACH ROW specify that trigger is executed on each row.

Types of PL/SQL Triggers

Trigger timing and operations forms different combinations such as BEFORE INSERT OR
BEFORE DELETE OR BEFORE UPDATE .BEFORE and AFTER are known as conditional
triggers.

Conditional Trigger: Before
Trigger is activated before the operation on the table or view is performed.
Query:
-- Create Geeks table
CREATE TABLE Geeks (
Id INT,
Name VARCHAR2(20),
Score INT

https://www.geeksforgeeks.org/dbms/difference-between-entity-constraints-referential-constraints-and-semantic-constraints/
https://www.geeksforgeeks.org/dbms/difference-between-entity-constraints-referential-constraints-and-semantic-constraints/

);

-- Insert into Geeks Table

INSERT INTO Geeks (Id, Name, Score) VALUES (1, 'Sam', 800);
INSERT INTO Geeks (Id, Name, Score) VALUES (2, 'Ram’, 699);
INSERT INTO Geeks (Id, Name, Score) VALUES (3, 'Tom', 250);
INSERT INTO Geeks (Id, Name, Score) VALUES (4, 'Om’, 350);
INSERT INTO Geeks (Id, Name, Score) VALUES (5, 'Jay', 750);

-- insert statement should be written for each entry in Oracle Sql Developer

CREATE TABLE Affect (
Id INT,
Name VARCHAR2(20),
Score INT

);

-- BEFORE INSERT trigger
CREATE OR REPLACE TRIGGER BEFORE_INSERT
BEFORE INSERT ON Geeks
FOR EACH ROW
BEGIN
INSERT INTO Affect (Id, Name, Score)
VALUES (:NEW.Id, :NEW.Name, :NEW.Score);
END;
/
INSERT INTO Geeks (Id, Name, Score) VALUES (6, 'Arjun’, 500);

BEFORE DELETE Trigger

-- BEFORE DELETE trigger
CREATE OR REPLACE TRIGGER BEFORE_DELETE
BEFORE DELETE ON Geeks
FOR EACH ROW
BEGIN
INSERT INTO Affect (Id, Name, Score)
VALUES (:OLD.lId, :OLD.Name, :OLD.Score);
END;
/
DELETE FROM Geeks WHERE Id = 3;

BEFORE UPDATE Trigger

-- BEFORE UPDATE trigger
CREATE OR REPLACE TRIGGER BEFORE_UPDATE
BEFORE UPDATE ON Geeks
FOR EACH ROW
BEGIN
INSERT INTO Affect (Id, Name, Score)
VALUES (:OLD.lId, :OLD.Name, :OLD.Score);
END;
/
UPDATE Geeks SET Score = 900 WHERE Id = 5;
SELECT * FROM Affect;
SELECT * FROM Geeks;

Output:
L o a8 3 Task completed in 0. 184 seconds

Trigger BEFORE_INSERT compiled
Il row inserted.
Trigger BEFORE DELETE compiled
1l row deleted.

Trigger BEFORE UPDATE compiled

1l row updated.

ID NAME SCORE
€ Arjun 500
3 Tom 250
5 Jay 750

Conditional Trigger Before

Explanation:

o« BEFORE_INSERT Trigger is fired before adding a row in Geeks Table,and row is inserted
in the Affect table.

« BEFORE_DELETE Trigger is activated before the row is delete from the Geeks table and
row which satisfy the condition is added to Affect table.

e BEFORE_UPDATE TRIGGER is activated before the row with 1d=5 is updated and row
with old values is added to Affect table

Geeks table after trigger events

{t ID |{} NAME |{} SCORE

1 S am S00

=
2 2 Ram 699
3 4 Om 350
4 S Jay S00
S € Arjun S00

Conditional Trigger Before

Conditional Trigger: After
Trigger is activated after the operation on the table or view is performed.

Query:
SET SERVEROUTPUT ON;

CREATE TABLE Geeks (
Id INT,
Name VARCHAR2(20),

Score INT
);

-- Insert into Geeks Table

INSERT INTO Geeks (Id, Name, Score) VALUES (1, 'Sam', 800);
INSERT INTO Geeks (Id, Name, Score) VALUES (2, 'Ram’, 699);
INSERT INTO Geeks (Id, Name, Score) VALUES (3, 'Tom', 250);
INSERT INTO Geeks (Id, Name, Score) VALUES (4, 'Om'’, 350);
INSERT INTO Geeks (Id, Name, Score) VALUES (5, 'Jay', 750);

-- insert statement should be written for each entry in Oracle Sql Developer

CREATE TABLE Affect (
Id INT,
Name VARCHAR2(20),
Score INT
);
SELECT * FROM Geeks;
-- AFTER DELETE trigger
CREATE OR REPLACE TRIGGER AFTER_DELETE
AFTER DELETE ON Geeks
FOR EACH ROW
BEGIN
INSERT INTO Affect (Id, Name, Score)
VALUES (:OLD.Id, :OLD.Name, :OLD.Score);
END;
/
DELETE FROM Geeks WHERE Id = 4;
-- AFTER UPDATE trigger
CREATE OR REPLACE TRIGGER AFTER_UPDATE
AFTER UPDATE ON Geeks
FOR EACH ROW
BEGIN
INSERT INTO Affect (Id, Name, Score)
VALUES (:NEW.Id, :NEW.Name, :NEW.Score);
END;
/
UPDATE Geeks SET Score = 1050 WHERE Id = 5;
SELECT * FROM Affect;
SELECT * FROM Geeks;

;;.Sc‘ipt OOnastpeat s

- oo B3 2 =) Task completed im O.
Tr-igges AFTITER DEIETE compiled

I TOow deletTted.

Trxriggex AEFTER UTrooaTeE comxmgp>3i 1led

= O urpr-dated .

59S seconds

Conditional Trigger After

Explanation: After the deletion of the row from the Geek table trigger is fired and the row which

is deleted is added to the Affect Table.In second trigger i.e After_update trigger is fired after

performing update on Geeks table and the row is added to Affect Table.Output contains the

Affect table and the Geek table after the trigger events.

Common Use Cases of PL/SQL Triggers

o To automate the actions in response to the events and reducing manual task.

o To apply constraint to ensure referential integrity and to prevent invalid data in table or
database.

e Inerror handling to response to errors.

Syntax

CREATE OR REPLACE TRIGGER trigger_name
BEFORE | AFTER
INSERT | UPDATE | DELETE
ON table_name
FOR EACH ROW
BEGIN
statements;
END;
/

Example

CREATE OR REPLACE TRIGGER emp_audit
AFTER INSERT ON emp
FOR EACH ROW
BEGIN
DBMS_OUTPUT.PUT_LINE('New Employee Added: ' || :NEW.ename);
END;
/

	UNIT-5 PL/SQL Notes
	1. Introduction to PL/SQL
	✴️ Features

	2. Structure of a PL/SQL Block
	Example:

	Arithmetic Operators
	Relational Operators
	Comparison Operators
	Logical Operators
	Example:

	5. Operator Precedence
	Example:

	6. Control Structures
	7. Iterative Control (Loops)
	(a) Basic LOOP
	the Loop statement of PL/SQL with all its features like EXIT, EXIT WHEN, and Nested Loop for example.
	Syntax

	EXIT Statement
	Syntax
	Example of PL/SQL LOOP with Conditional EXIT

	EXIT WHEN Statement
	Syntax
	Example of PL/SQL LOOP with EXIT WHEN

	Nested Loops
	Syntax
	Example of PL/SQL Nested FOR Loop Simultaneous Iteration

	Cursor Actions
	Types
	Explicit Cursor Example

	9. Procedure
	Syntax
	Example

	10. Function
	Syntax
	Example

	11. Packages
	Two Parts:
	Example

	12. Exception Handling
	Types
	Predefined Example
	User-Defined Exception Example

	13. Triggers
	PL/SQL Triggers
	Why are Triggers important?
	PL/SQL Trigger Structure
	Types of PL/SQL Triggers
	Conditional Trigger: Before
	Conditional Trigger: After

	Common Use Cases of PL/SQL Triggers
	Syntax
	Example

