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INTRODUCTION

NUMERICAL ANALYSIS

Numerical Analysis is the branch of mathematics that provides tools and methods for solving
mathematical problems in numerical form.

In numerical analysis we are mainly interested in implementation and analysis of numerical
algorithms for finding an approximate solution to a mathematical problem.

NUMERICAL ALGORITHM

A complete set of procedures which gives an approximate solution to a mathematical
problem.

CRITERIA FOR A GOOD METHOD

1) Number of computations i.e. Addition, Subtraction, Multiplication and Division.
2) Applicable to a class of problems.

3) Speed of convergence.

4) Error management.

5) Stability.

STABLE ALGORITHM

Algorithm for which the cumulative effect of errors is limited, so that a useful result is
generated is called stable algorithm. Otherwise Unstable.

NUMERICAL STABILITY
Numerical stability is about how a numerical scheme propogate error.
NUMERICAL ITERATION METHOD

A mathematical procedure that generates a sequence of improving approximate solution for
a class of problems i.e. the process of finding successive approximations.



ALGORITHM OF ITERATION METHOD

A specific way of implementation of an iteration method, including to termination criteria is
called algorithm of an iteration method.

In the problem of finding the solution of an equation, an iteration method uses as
initial guess to generate successive approximation to the solution.

CONVERGENCE CRITERIA FOR A NUMERICAL COMPUTATION

If the method leads to the value close to the exact solution, then we say that the method is
convergent otherwise the method is divergent.i.e.lim,,_,, x, = r

ROUNDING

uyn
X

For x€eR; f(x) is an element of “F” nearest to and the transformation x—f(x) is called

Rounding (to nearest).

Why we use numerical iterative methods for solving equations?

As analytic solutions are often either too tiresome or simply do not exist, we need to find an
approximate method of solution. This is where numerical analysis comes into picture.

LOCAL CONVERGENCE

An iterative method is called locally convergent to a root, if the method converges to root for
initial guesses sufficiently close to root.

RATE OF CONVERGENCE OF AN ITERATIVE METHOD

Suppose that the sequence (xx) converges to “r” then the sequence (xy) is said to converge to
“r” with order of convergence “a” if there exist a positive constant “p” such that

Thus if a = 1, the convergence is linear. If a = 2, the convergence is quadratic and so
on.Where the number “a” is called convergence factor.

REMARK

> Rate of convergence for fixed point iteration method is linear.
» Rate of convergence for Newton Raphson method is quadratic.
» Rate of convergence for Secant method is Super linear.



ORDER OF CONVERGENCE OF THE SEQUENCE

Let (X0, X1,X2,ee00eee )be a sequence that converges to a number “a” and set €,=a - x,

l€n+1|
|6n|k

Then “k” is called order of convergence of the sequence and “c” the asymptotic error

If there exist a number “k” and a positive constant “c” such that lim,,_,

constant.

CONSISTENT METHOD

Let xe[a,b],yeR? and the function f:[a,b]xR%xR,—~R? may be thought of as the
approximate increment per unit step, Or the approximate difference quotient and it defines
the method and consider T(x,y:h) is truncation error then the method “f” is called consistent
if T(x,y:h)=0 as h—0 uniformly for (x,y) € [a,b]XRd

PRECISION

Precision mean how close are the measurements obtained from successive iterations.

ACCURACY

Accuracy means how close are our approximations from exact value.

DEGREE OF ACCURACY OF A QUADRATURE FORMULA

It is the largest positive integer “n” such that the formula is exact for “x*” for each
(k=0,1,2,......n). i.e. Polynomial integrated exactly by method.

CONDITION OF A NUMERICAL PROBLEM

A problem is well conditioned if small change in the input information causes small change in
the output. Otherwise it is ill conditioned.

STEP SIZE, STEP COUNT, INTERVAL GAP

. e b- . ,
The common difference between the pointsi.e. h = Ta = ti.1- t; is called step — size.



ERROR ANALYSIS

ERROR

Error is a term used to denote the amount by which an approximation fails to equal the exact
solution. Error = Exact solution — Approximation

SOURCE OF ERRORS

Numerically computed solutions are subject to certain errors. Mainly there are three types of
errors

1. Inherent errors 2. Truncation errors 3. Round Off errors

INHERENT (EXPERIMENTAL) ERRORS

Errors arise due to assumptions made in the mathematical modeling of problems. Also arise
when the data is obtained from certain physical measurements of the parameters of the
problem i.e. errors arising from measurements.

TRUNCATION ERRORS

Errors arise when approximations are used to estimate some quantity.

These errors corresponding to the facts that a finite (infinite) sequence of computational
steps necessary to produce an exact result is “truncated” prematurely after a certain number
of steps.

How Truncation error can be removed?

Use exact solution.

Error can be reduced by applying the same approximation to a larger number of smaller
intervals or by switching to a better approximation.

ROUND OFF ERRORS
Errors arising from the process of rounding off during computations.

These are also called “chopping” i.e. discarding all decimals from some decimals on.



RELATIVE ERRORS

If “a” is an approximate value of a quantity whose exact value is “a” then relative error (€,.) of

-y . error €
“3” is defined by le | = _lerrorl _ [l
|true value)| |a|

EXAMPLE
Consider /2=1.414213....... upto four decimal places then /2=1.4142+ errors

|error|=]1.4142-1.41421|=0.00001 taking 1.4142 as true or exact value.

0.00001

Hence €, = Ta1az

REMARK

. erzg if | € | is much less than |a|

Il.  We may also introduce the quantity “ Y= a-a = - €” and called it the “correction”
ll. Truewvalue = Approximate value + Correction

ABSOLUTE ERROR

If “a” is an approximate value of a quantity whose exact value is “a” then the difference
“ € =a-a” is called absolute error of “a”.

> a=a+e
EXAMPLE
If a = 10.52 is an approximation to a = 10.5 then the error is € = 0.02
ERROR BOUND
It is a number “B” for “a” such that |a-a|<Bi.e. | € |<B
PROBABLE ERROR

This is an error estimate such that the actual error will exceed the estimate with probability
one - half.

In other words, the actual error is as likely to be greater than the estimate as less. Since this
depends upon the error distribution, it is not an easy target and a rough substitute is often
used /1 € with “€” the maximum possible error.



INPUT ERROR

Error arises when the given values (yo =f(Xo), Y1, Y2,e000ees Yn) are inexact as experimental or
computed values usually are.

LOCAL ERROR

This is the error after first step.

€i+1= X(toth)-x;

The Local Error is the error introduced during one operation of the iterative process.
GLOBAL ERROR

This is the error at n-step.

€ n= X(tn) - Xn

The Global Error is the accumulation error over many iterations.

Note that the Global Error is not simply the sum of the Local Errors due to the non-linear
nature of many problems although often it is assumed to be so, because of the difficulties in
measuring the global error.

LOCAL TRUNCATION ERROR

It is the ratio of local error by step size.

LOCAL ERROR
\TE=————7—
STEP SIZE

REMARK : Floating point numbers are not equally spaced.



SOLUTION OF NON-LINEAR EQUATIONS

ROOTS (SOLUTION) OF AN EQUATION OR ZEROES OF A FUNCTION

un

Those values of “x” for which f(x) = 0 is satisfied are called root of an equation. Thus “a” is
root of f(x) =0 iff f(a) =0

DEFLATION: It is a technique to compute the other roots of f(x) =0

ZERO OF MULTIPLICITY

A solution “p” of f(x) = 0 is a zero of multiplicity “m” of “f” if for “x # p” we can write
f(x) = (x-p)" q(x) where “lim;_,, q(x) # 0”

ALGEBRAIC EQUATION

The equation f(X) = 0 is called an algebraic equation if it is purely a polynomial in “x”.
e.g. X>+5x%-6x+3 = 0

TRANSCENDENTAL EQUATION

The equation f(x) = 0 is called transcendental equation if it contains Trigonometric, Inverse
trigonometric, Exponential, Hyperbolic or Logarithmic functions.e.g.

i. M-=e-esinx ii. ax*+log(x-3) +exsinx = 0

PROPERTIES OF ALGEBRAIC EQUATIONS
1. Every algebraic equation of degree “n” has “n” and only “n” roots.e.g.
x> - 1=0 has distinct roots i.e. 1, -1
x*+2x+1 = 0 has repeated roots i.e. -1, -1
x*+1 = 0 has complex roots i.e. +i, -i

2. Complex roots occur in pair. i.e. (a+bi) and (a-bi) are roots of f(x)=0
3. If x=ais aroot f(x)=0, a polynomial of degree “n” then (x-a) is factor of f(x)=0 on
dividing f(x) by (x-a) we obtain polynomial of degree (n-1).



DISCARTS RULES OF SIGNS

The number of positive roots of an algebraic equation f(x)=0 with the real coefficient cannot
exceed the number of changes in sign of the coefficient in f(x)=0.

e.g. X>-3x*+4x-5=0 changes its sign 3-time, so it has 3 roots.

Similarly, the number of negative roots of f(x)=0 cannot exceed the number of changes
in sign of the coefficient of f(-x) =0

e.g. -x’-3x’-4x-5=0 does not changes its sign, so it has no negative roots.
REMARK

There are two types of methods to find the roots of Algebraic and Transcendental equations.
() DIRECT METHODS (i) INDIRECT (ITERATIVE) METHODS

DIRECT METHODS

1. Direct methods give the exact value of the roots in a finite number of steps.
2. These methods determine all the roots at the same time assuming no round off errors.
3. In the category of direct methods; Elimination Methods are advantageous because

they can be applied when the system is large.

INDIRECT (ITERATIVE) METHODS

1. These are based on the concept of successive approximations. The general procedure
is to start with one or more approximation to the root and obtain a sequence of
iterates “x” which in the limit converges to the actual or true solution to the root.

2. Indirect Methods determine one or two roots at a time.

3. Rounding error have less effect

4. These are self-correcting methods.

5. Easier to program and can be implemented on the computer.
REMEMBER: Indirect Methods are further divided into two categories

I.  BRACKETING METHODS Il. OPEN METHODS



BRACKETING METHODS

These methods require the limits between which the root lies. e.g. Bisection method, False
position method.

OPEN METHODS

These methods require the initial estimation of the solution. e.g. Newton Raphson method.

ADVANTAGES AND DISADVANTAGES OF BRACKETING METHODS

Bracket methods always converge.

The main disadvantage is, if it is not possible to bracket the root, the method cannot
applicable.

GEOMETRICAL ILLUSTRATION OF BRACKET FUNCTIONS

In these methods we choose two points “x,” and “x,.1” such that f(x,) and f(x,.1) are of
opposite signs.

Intermediate value property suggests that the graph of “y=f(x)” crosses the x-axis between
these two points, therefore a root (say) “x=x,” lies between these two points.

REMARK

Always set your calculator at radian mod while solving Transcendental or Trigonometric
equations.

How to get first approximation?

We can find the approximate value of the root of f(x)=0 by “Graphical method” or by
“Analytical method”.

INTERMEDIATE VALUE THEOREM

Suppose “f” is continuous on [a, b] and f(a)# f(b) then given a number “A” that lies between
f(a) and f(b) then there exist a point “c” such that a<c<b with f(c) =%



BISECTION METHOD

Bisection method is one of the bracketing methods. It is based on the “Intermediate value
theorem”

The idea behind the method is that if f(x) € C [a, b] and f(a).f(b)<0 then there exist a root
“c € (a,b)” such that “f(c)=0"

This method also known as BOLZANO METHOD (or) BINARY SECTON METHOD.

ALGORITHM
For a given continuous function f(x)

Find a,b such that f(a).f(b)<0 (this means there is a root “r € (a,b)” such that f(r)=0
Letc= asz (mid-point)

If f(c)=0; done (lucky!)

Else; check if f(c).f(a) <0or f(c).f(b) <O

Pick that interval [a, c] or [c, b] and repeat the procedure until stop criteria satisfied.

i hw NPR

STOP CRITERIA

Interval small enough.
| f(cn)| almost zero
Maximum number of iteration reached

hWNPRE

Any combination of previous ones



CONVERGENCE CRITERIA

No. of iterations needed in the bisection method to achieve certain accuracy

. . ag+b
Consider the interval [ag,bo] ,, Co = ——

and let r € (ag,bo) be a root then the error is

bo—
€o= |r-C0|SOTaO

Denote the further intervals as [a,,b,] for iteration number “n” then

_ by—a, _ bp—ap _€o
Cnzlrals = <t =

bo—ay

If the error tolerance is “€” we require “€,S€” then — -7

<E

After taking logarithm = log (bo-ap) — nlog2 < log (2€)

log (bg—ayp) - log(2€) <n = log (b—a) - log2¢e

<n (whichisr ir
log2 log2 ( chisrequ ed)

MERITS OF BISECTION METHOD

1. The iteration using bisection method always produces a root, since the method
brackets the root between two values.

2. As iterations are conducted, the length of the interval gets halved. So one can
guarantee the convergence in case of the solution of the equation.

3. Bisection method is simple to program in a computer.

DEMERITS OF BISECTION METHOD

1. The convergence of bisection method is slow as it is simply based on halving the
interval.

2. Cannot be applied over an interval where there is discontinuity.

3. Cannot be applied over an interval where the function takes always value of the same
sign.

4. Method fails to determine complex roots (give only real roots)

5. If one of the initial guesses “ap” or “by” is closer to the exact solution, it will take larger
number of iterations to reach the root.



EXAMPLE
Solve x3-9x+1 for roots between x=2 and x=4

SOLUTION

X 2 |4

f(x) | -9 | 29

Since f (2). f (4) <0 therefore root lies between 2 and 4

(1) x.= L g 3 so f(3)=1 (+ve)

=
(2) Forinterval [2,3]; x,=% =

f (2.5) = -5.875 (-ve)
(3) Forinterval [2.5,3]; x,=(2.5+3)/2=2.75
f (2.75) =-2.9534 (-ve)
(4) Forinterval [2.75,3]; x,=(2.75+3)/2=2.875
f (2.875) = -1.1113 (-ve)
(5) Forinterval [2.875,3]; x.=(2.875+3)/2=2.9375
f (2.9375) =-0.0901 (-ve)
(6) Forinterval [2.9375,3]; x,=(2.9375+3)/2 = 2.9688
f (2.9688) = +0.4471 (+ve)
(7) For interval [2.9375,2.9688]; x, = (2.9375+2.9688)/2 = 2.9532
f(2.9532) = +0.1772 (+ve)
(8) Forinterval [2.9375,2.9532]; x, =(2.9375+2.9532)/2 = 2.9453
f (2.9453) = 0.1772
Hence root is 2. 9453 because roots are repeated.

2.5



EXAMPLE

Use bisection method to find out the roots of the function describing to drag coefficient of
parachutist given by

667.38
c

f(c) =

[1-exp(-0.146843¢c)]-40 Where “c=12" to “c=16" perform at least two iterations.

SOLUTION

667.38

c

Giventhat f(c) =

[1-exp(-0.146843c)]-40

X 12 13 14 15

f(x) | 6.670 | 3.7286 | 1.5687 | -0.4261

Since f (14). f (15) <0 therefore root lie between 14 and 15

X,="22=145 So f(14.5)=0.5537

Again f (14.5). f (15) <0 therefore root lie between 14.5 and 15

X = 14'5;15 =14.75 So f(14.75) =0.0608 These are the required iterations

EXAMPLE

Explain why the equation e~*= x has a solution on the interval [0,1]. Use bisection to find the
root to 4 decimal places. Can you prove that there are no other roots?

SOLUTION

If f(x) = e*-x, then f(0) =1, f(1) =1/e — 1 < 0, and hence a root is guaranteed by the
Intermediate Value Theorem. Using Bisection, the value of the root is x’=.5671.
Since fO(x) = —e~* -1 < 0 for all x, the function is strictly decreasing, and so its graph can only

cross the x axis at a single point, which is the root.



FALSE POSITION METHOD

This method also known as REGULA FALSI METHOD,, CHORD METHOD ,, LINEAR
INTERPOLATION and method is one of the bracketing methods and based on intermediate
value theorem.

This method is different from bisection method.

Like the bisection method we are not taking the mid-point of the given interval to determine
the next interval and converge faster than bisection method.

ALGORITHM
Given a function f(x) continuous on an interval [ag,bo] and satisfying f(ap).f(bo)<O0 for all
n=0,1,2,3.......... then Use following formula to next root

xf—xi

Xr= Xf — ]m f(Xf) We can also use Xy = Xn+1 559 Xf = Xn 5 Xi = Xpn-1

STOPING CRITERIA
Interval small enough.
|f(c,)| almost zero

Maximum number of iteration reached
Same answer.

ik WiNR

Any combination of previous ones



EXAMPLE
Using Regula Falsi method Solve x>-9x+1 for roots between x=2 and x=4

SOLUTION

X 2 |4

f(x) | -9 | 29

Since f(2).f(4)<0 therefore root lies between 2 and 4

Using formula

xf—xi
=Xj-——f
X=X o ren )
Forinterval [2,4] wehave x,=4 — 294__:9) x29 = 2.4737

Which implies f(2.4737) = —6.1263 (-ve)

Similarly, other terms are given below

Interval Xr F(x)
[2.4737,4] 2.7399 -3.0905
[2.7399,4] 2.8613 -1.326
[2.8613,4] 29111 -0.5298
[2.9111,4] 2.9306 -0.2062
[2.9306,4] 2.9382 -0.0783
[2.9382,4] 2.9412 -0.0275
[2.9412,4] 2.9422 -0.0105
[2.9422,4] 2.9426 -0.0037
[2.9426,4] 2.9439 0.0183
[2.9426,2.9439] 2.9428 -0.0003
[2.9426,2.9439] 2.9428 -0.0003




EXAMPLE

Using Regula Falsi method to find root of equation “logx — cosx = 0” upto four decimal

places, after 3 successive approximations.

SOLUTION
X 0 1 2
F(X) -0 -0.5403 1.1093

Since f(1).f(2)<0 therefore root lies between 1 and 2

Using formula

xf—x,-

70 —fep o)

Xr= X5 -

2-1

- TTo93-Cosios X 1-1093=1.3275

Forinterval [1,2] we have x,=2

Which implies f(2.4737)=0.0424(+ve)

Similarly, other terms are given below

Interval X F(x/)
[1,1.3275] 1.3037 0.0013
[1,1.3037] 1.3030 0.0001

Hence the root is 1.3030
KEEP IN MIND

= Calculate this equation in Radian mod

= If you have “log” then use “natural log”. If you have “log,” then use “simple

”

log”.




GENERAL FORMULA FOR REGULA FALSI USING LINE EQUATION
Equation of line is

Y—fOn) _ fxn1) — fF(xn)

X — Xp Xn-1— Xn

Put (x,0) i.e. y=0

—f () _ fCtner) = f )

X — Xp Xn-1— Xn

_f(xn) X — Xp

1) — f(Xn) X1 —Xn

—(xn_l - xn)f(xn) =x—-x
f(xn-1) — f(xn) i

_ (xn—l - xn)f(xn)
fxn-1) — f(xn)

Hence first approximation to the root of f(x) =0 is given by

(xn - xn—l)f(xn)

Xt = I T ) — F(Xn)

We observe that f(x,.1), f(x.+1) are of opposite sign so, we can apply the above procedure to
successive approximations.

X=X,




SECANT METHOD

The secant method is a simple variant of the method of false position which it is no longer
required that the function “f” has opposite signs at the end points of each interval generated,
not even the initial interval.

In other words, one starts with two arbitrary initial approximations x, # x; and continues
with

_ _ (xn_xn—l)f(xn) o
it = T S ey T

This method also known as QUASI NEWTON’S METHOD.

ADVANTAGES

1. No computations of derivatives
2. One f(x) computation each step
3. Also rapid convergence than Falsi method

Example 1 Use Secant method to find the root of the function f(x) = cosx + 2sinx + x?2
to 5 decimal places. Don’t forget to adjust your calculator for “radians”.

Solution: A closed form solution for x does not exist so we must use a numerical technique. The
Secant method is given using the iterative equation:

Tp — Tp—1
Tntl = Tn = f(xll) [f(xn) o f($ral)], (€3]

We will use xo= 0 and x; = -0.1 as our initial approximations and substituting in (1), we have
; = —0.1 — 0.80533 * [l ] =

Tpl = : -OU9 08053311 —

-0.51369. The continued iterations can be computed as shown in Table 1 which shows a stop at

iteration no. 5 since the error is x5-x4 < 10-5resulting in a root of x*= -0.65926

Table 1: Iterations for Example-1

Iteration no. Xn-1 Xn Xn+1 USing (1) f(Xn+1) Xn+1 — Xn
1 X0=0 x1=-0.1 -0.51369 0.15203 -0.41369
2 -0.1 -0.51369 -0.60996 0.04605 -0.09627
3 -0.51369 | -0.60996 -0.65179 6.60859 x 10-3 -0.04183
4 -0.60996 | -0.65179 -0.65880 4.08003 x 104 -0.00701
5 -0.65179 | -0.65880 -0.65926 5.28942 x 10-¢ -0.00046




Example-2: Use Secant method to find the root of the function f(x) = x3- 4 to 5 decimal
places.

Solution Since the Secant method is given using the iterative equation in (1). Starting with
an initial value xo = 1 and x; = 1.5, using (1) we can compute
1.5-1
g = 1.5 — (—0.625 [— } ~ 1.
( ) —0.625—(=3) 63158. The continued iterations can be
computed as shown in Table 2 which shows a stop at iteration no. 5 since the error is
X5 — X4 < 10-5resulting in a root of x*= 1.58740,

Table 2: Iterations for Example-2

Iteration no. Xn-1 Xn Xn+1 Using (1) f(xn+1) Xn+1 — Xn
1 Xo=1 x1=1.5 1.63158 0.34335 0.13158
2 1.5 1.63158 1.58493 -0.01865 -0.04665
3 1.63158 | 1.58493 1.58733 -0.00054 0.0024
4 1.58493 | 1.58733 1.58740 -7.95238 x 10-6 | 0.00007
5 1.58733 | 1.58740 1.58740 -7.95238 x 10-6 <10-5

Example-3: Use Secant method to find the root of the function f(x) = 3x + Sinx - ex

to 5 decimal places. Use xo= 0 and x1 = 1.

Solution

Using (1) we can compute
The continued iterations can be computed as shown in Table 3 which shows a stop at

o = 1—(1.12319) [

1-0
1.12310—(—1)

} — 0.47099.

iteration no. 6 since the error is x¢—x5 < 10-5 resulting in a root of x*= 0.36042

Table 3: Iterations for Example-3

Iteration Xn-1 Xn Xn+1 Using (1) f(xn+1) Xn+1— Xn

no.
1 Xo=0 x1=1 0.47099 0.26516 -0.52901
2 1 0.47099 0.30751 -0.13482 -0.16348
3 0.47099 | 0.30751 0.36261 5.47043 x 10-3 0.0551
4 0.30751 | 0.36261 0.36046 9.58108 x 100-5 -0.00215
5 0.36261 | 0.36046 0.36042 -4.26049 x 10-¢ -0.00004
6 0.36046 | 0.36042 0.36042 -4.26049 x 10-¢ <10-5




Example-4: Solve the equation exp(-x) = 3log(x) to 5 decimal places using secant

method, assuming initial guess xo=1 and x; = 2.
Solution

Let f(x) = exp(-x) - 3log(x), to solve the given, it is now equivalent to find the
root of f(x). Using (1) we can compute

2—-1
(70' 76775) —0.76775—(0.36788)

X2=2 - '32394. The continued iterations can
be computed as shown in Table 4 which shows a stop at iteration no. 5 since the
error is xs — x4 < 10-5resulting in a root of x*= 1.24682,

Table 4: Iterations for Example-4

Iteration Xn-1 Xn Xn+1 using (1) f(xn+1) Xn+1— Xn
no.
1 xo=1 X1=2 1.32394 -0.09952 -0.67606
2 2 1.32394 1.22325 0.03173 -0.10069
3 1.32394 | 1.22325 1.24759 -1.01955 x 103 0.02434
4 1.22325 | 1.24759 1.24683 -7.27178 x 10-¢ -0.00076
5 1.24759 | 1.24683 1.24682 6.05199 x 10-¢ <10-5
FIXED POINT

The real number “x” is a fixed point of the function “f” if f(x) =x

The number x=0.7390851332 is an approximate fixed point of f(x) = cosx

REMARK

Fixed point are roughly divided into three classes

ASYMPTOTICALLY STABLE:

STABLE:

UNSTABLE:

with the property that all nearby solutions converge to it.

All nearby solutions stay nearby.

Almost all of whose nearby solutions diverge away from the fixed point




FIXED POINT ITERATION METHOD

ALGORITHM

1. Consider f(x) =0 and transform it to the form x= ¢ (x)
2. Choose an arbitrary xo
3. Do the iterations x.1=¢ (x;) ; k=0,1,2,3..........

STOPING CRITERIA

Let “€” be the tolerance value

[xp — xp-1l <€

1
2. |x— f(x)l se

3. Maximum number of iterations reached.
4. Any combination of above.

CONVERGENCE CRITERIA

Let “x” be exact root such that r=f(x) out iteration is Xn.1 = f(xn)

Define the error €,=x,-r Then

€ni1 = Xnp1 =T = () =1 = () = f) = f/(§)(xn — 1)

(Where § € (x,,, 1) ; since fis continuous)

€ni1 = [ (Qen = €ni1 S| (§)ll€nl

OBSERVATIONS

If |f'(§)]<1, error decreases, the iteration converges (linear convergence)

If |f'(§)]= 1, errorincreases, the iteration diverges.

REMEMBER: If |¢'(x)]|< 1in questions then take that point as initial guess.



EXAMPLE

Find the root of equation 2x = cosx + 3 correct to three decimal points using fixed point
iteration method.

SOLUTION

Giventhat f(x) =2x—cosx—3 =0

X 0 1 2

F(X) -4 -1.5403 1.4161

Root lies between “1” and “2”

cosx+3
Now 2x —cosx —3=0=x="—"—=¢(x) If by putting 1 we get
! .
, 1, . , 1, . x)|< 1then take it as
S /(1) = Lsim0) = [0/ ()] = | 2sinn)] lo" )]
X~ if not then check for 2
Now X,;1 = @(x,) = Xpyq1 = %(Coxxn +3) rather take their mid-
point
Here we will take “x¢” as mid-point. So
Xo = % =1.5
Xi= % (cosxy +3) = 1.5354 F(x1) = 0.0354
X,= > (cosx; + 3) = 1.5177 F(xo) = -0.0177
X3 = 1.5265 F(x3) = 0.0087
X = 1.5221 F(x4) = -0.0045
Xs = 1.5243 F(xs) = 0.0021
X = 1.5232 F(xs) = -0.0012
X; = 1.5238 F(x;) = 0.0006
Xg = 1.5235 F(xg) = -0.0003
Xo =1.5236 F(xs) = 0.0000

Hence the real root is 1.5236




EXAMPLE

Find the root of equation e ™ = 10x correct to four decimal points using fixed point
iteration method.

SOLUTION

Given that

fx)=e*—-10x=0

X 0 1

F(X) 1 -9.6321

Root lies between “0” and “1”

Now e‘x—10x=0:x=%=(p(x)

e—x
=@'(x) = BT

Now since |@'(0)| = 0.1 is less than “1” therefore xo =0

—-Xn

Now Xpi1 = @(Xp) = Xpi1 =

10
—x 0 =
X, == = °=0.1000 Flx1) = -0.0952
10 10
X,= 0.0905 F(x,) = 0.0085
X3 = 0.0913 Flxs) = -0.0003
X4 = 0.0913 F(xa) = -0.0003

Hence the real root is 0.0913




NEWTON RAPHSON METHOD

Nature and Nature’s laws lay hid in night:
God said, Let Newton be! And all was light.
Alexander Pope, 1727

The Newton Raphson method is a powerful technique for solving equations numerically. It is
based on the idea of linear approximation. Usually converges much faster than the linearly
convergent methods.

ALGORITHM
The steps of Newton Raphson method to find the root of an equation “f(x) =0” are
Evaluate f'(x)

Use an initial guess (value on which f(x) and f''(x) becomes (+ve) of the roots “x,” to
estimate the new value of the root “x,.:” as

f(xn)

n

. ... this value is known as Newton's iteration

STOPING CRITERIA

Find the absolute relative approximate erroras |€.| = | x";l—_x" | x 100
n+1

1.
2. Compare the absolute error with the pre-specified relative error tolerance “€”.
3. If | €4]> €sthen go to next approximation. Else stop the algorithm.

4. Maximum number of iterations reached.
5. Repeated answer.

CONVERGENCE CRITERIA

Newton method will generate a sequence of numbers (x,) ; n= 0, that converges to the zero
llx*" of llf" if
“f” is continuous.

u“

e “x+«”is asimple zero of “f”.

[

e “xo” is close enough to “x+”



When the Generalized Newton Raphson method for solving equations is helpful?

To find the root of “f(x)=0" with multiplicity “p” the Generalized Newton formula is required.

What is the importance of Secant method over Newton Raphson method?

Newton Raphson method requires the evaluation of derivatives of the function and this is not
always possible, particularly in the case of functions arising in practical problems.

In such situations Secant method helps to solve the equation with an approximation to the
derivatives.

Why Newton Raphson method is called Method of Tangent?

In this method we draw tangent line to the point” Py(xo,f(X0))”. The (x,0) where this tangent
line meets x-axis is 1°** approximation to the root.

Similarly, we obtained other approximations by tangent line. So, method also called Tangent
method.

Difference between Newton Raphson method and Secant method.

Secant method needs two approximations xg,x; to start, whereas Newton Raphson method
just needs one approximation i.e. xqo

Newton Raphson method converges faster than Secant method.

Newton Raphson method is an Open method, how?

Newton Raphson method is an open method because initial guess of the root that is needed
to get the iterative method started is a single point. While other open methods use two initial
guesses of the root but they do not have to bracket the root.



INFLECTION POINT

For a function “f(x)” the point where the concavity changes from up-to-down
or down-to-up is called its Inflection point.

e.g. f(x) = (x-1)® changes concavity at x=1,, Hence (1,0) is an Inflection point.
DRAWBACKS OF NEWTON’S RAPHSON METHOD

e Method diverges at inflection point.

e For f(x)=0 Newton Raphson method reduce. So one must be avoid division by zero.
Rather method not converges.

¢ Root jumping is another drawback.

e Results obtained from Newton Raphson method may oscillate about the Local
Maximum or Minimum without converging on a root but converging on the Local
Maximum or minimum.

Eventually, it may lead to division by a number close to zero and may diverge.

e The requirement of finding the value of the derivatives of f(x) at each approximation
is either extremely difficult (if not possible) or time consuming.



FORMULA DARIVATION FOR NR-METHOD
Given an equation “f(x) = 0” suppose “Xo” is an approximate root of “f(x) = 0”
Letx; =x¢g+h....c ... ... ... (1) since x;{ —x9g=h

Where “h” is the small; exact root of f(x)=0

Then f(x1) =0 = f(xo + h) since xy =xog+h
By Taylor theorem
! hz n

Since “h” is small therefore neglecting higher terms we get

f(xg+h) = f(xo) + hf'(x9) =0

x
N iC5)
f (x0)
f(x0)
1)=>x,=x -z~
== %" 56
. _ _ f(xo)
Similarly x; = xo 1 Ge0)
_ _ fx1)
Y2 =X T Gy
_ f(xn)

xn+1 = xn f’(xn)

This is required Newton’s Raphson Formula.



EXAMPLE
Apply Newton’s Raphson method for cosx = xe* at x, = 1 correct to three decimal places.
SOLUTION

f(x) = cosx — xe*

f'(x) = —sinx — e* — xe*
. _ . faw
Using formula Xni1 = Xn )
atx, =1
_ fx0)

X1 =X9—+5—=0.653 (after solving)
f'(x0)

f(xy) = —0.460 ; f'(xy) = —3.783

Similarly

n Xn f(xn) f'(xn)
2 0.531 -0.041 -3.110

3 0.518 -0.001 -3.043

4 0.518 -0.001 -3.043

Hence root is “0.518”
REMARK

1. If two are more roots are nearly equal, then method is not fastly convergent.
2. Ifroot is very near to maximum or minimum value of the function at the point, NR-
method fails.




EXAMPLE
Apply Newton’s Raphson method for xlogox = 4.77 correct to two decimal places.
SOLUTION

f(x) =xlogox — 4.77
1
f'(x) =logqox + x;logloe

f'(x) =logqox + logqe

f'(x) =logqox + 0.4343 sincee = 2.71828

. 1 0.4343
['(x) ==logq0e =
X
For interval
X 0 1 2 3 4 5 6 7
f(x) -4.77 -4.77 -4.17 -3.34 -2.36 -1.28 -0.10 1.15

Root lies between 6 and 7 and let xo =7

P _ _ f(xn)
Using formula Xni1 = Xn )
Thus

=y T .
X1 = X0 = G0 6.10 after solving
f(x1) =0.02; f'(xq) =1.22

Similarly

n Xn f(xn) f'(xa)

2 6.08 0.00 0.00

Hence root is “6.08”




GEOMETRICAL INTERPRETATION (GRAPHICS) OF NEWTON RAPHSON FORMULA

Suppose the graph of function “y=f(x)” crosses x-axis at " « " then "x = " is the root of
equation"f(x) = 0".

CONDITION

Choose “xo” such that "f(x)" and f"(x) have same sign. If "(xq, f(x))" is a point then slope

n d ! n
of tangent at "(xo, f(*0)) = M = = |xy rxe) = f'(%o)
Now equation of tangent is

Y — Yo =m(x — x)

Y= F(X0) = f/(X0) (X = X()  cvevevrererereneseesssesssssssssessssasssensnsas (i)
Since (x4, f(x1) = y1 = 0) as we take x; as exact root
(i)= 0 — f(xo) = f'(x0)(x — x0)

feo _ .
fixoy - X1 %o

_ _ fxo0)
1= X0 7 fGy

Which is first approximation to the root " o " . If “P,” is a point on the curve corresponding
to “x,” then tangent at “P,” cuts x-axis at P1(x,, 0) which is still closer to “o” than “x,”.
Therefore “x,” is a 2™ approximation to the root.

Continuing this process, we arrive at the root “o”.



CONDITION FOR CONVERGENCE OF NR-METHOD
Since by Newton Raphson method

o fGw
Xpi1 = Xp — Flx) PSRN (o § |

And by General Iterative formula

Xpt1 = @(x,) SRR ¢/

Comparing (1) and (2)

_ f(xn)
(P(xn) = Xp— £ (xn)
px)= x-— % (simply)

Since by iterative method condition for convergence is

lo'(x)| < 1 ORI ¢ )

So
f'Of' (x) — fOf "(x)]
(f'(x))?
1 (f'(%))? +f(x)f"(x)
fF'x)* - (f'(x))?

s FOOF()
¢'(x) =5y

@'(x)=1-]

¢'(x) =

Using in (3) we get

fOf"®)

" , 2
(F' ) = |f(f ()| < (f (x))

Which is required condition for convergence of Newton Raphson method, provided that
initial approximation “x,” is choose sufficiently close to the root and f(x), f'(x), f"(x) are
continuous and bounded in any small interval containing the root.



NEWTON RAPHSON METHOD IS QUADRATICALLY CONVERGENT
(OR)

NEWTON RAPHSON METHOD HAS SECOND ORDER CONVERGENCE
(OR)

ERROR FOR NEWTON RAPHSON METHOD

Let " « " be the root of f(x) =0 and

( Xp—X=Ep ) R §

Xn+1—X=E€py1q

If we can prove that €,.,.,= k €0 where “k” is constant then “p” is called order of
convergence of iterative method then we are done.

Since by Newton Raphson formula we have

Xnt1 = Xp — ;,(&':l)) Then using (1) in it
f(x +€,)
X +E€p41=X +€,— f’(oc—+en)
n
[l +€,)

€Eni1=Cn— 7———<
T f(xt€n)
Since by Taylor expansion we have

2
F() +Eq /() + 52 f7()

£(00) +€p £(2) + SEF7 ()

En+1=€n—

Since " « " is root of f(x) therefore "f (o) = 0"

2
En f/() + S F"()

£1(60) +En (o) + 5B (w0)

En+1=C€n—



W [ (60) +€p f1(00) + 5B f”’(°<)] — /() - S0
£1(09) €0 () + S £ (e0)

en+1_

S o0+ S (00
£1(e) +En (o) + SEF7 (w0

En+1=

After neglecting higher terms

EZ
I G
T () +E, f1(%)
) & ()
n+1—
2f/ (01 + L)
L@ . e f(®)
N Y I IR A C))
L&, L Ef(®)
T IR T CY
- VGO Vi
T2 2f% ()
& ()

"(ox
= —— -~ =—kege2 wheresz()

¢ n 2f ()

]—1

+ neglected

It shows that Newton Raphson method has second order convergence

Or

Converges quadratically.



Convergence of Newton-Raphson Method

Example:

x x
9 )
nmn mwn

x
&
n

Usually converges quadratically

Xo =

X

X2

X3 =

Xa

f(x)=e —x

Solved with 2 methods:

Newton-Raphson with x,=0
False-Position Method with x,=0 and x,=20

Newton-Raphson

Iterations

true error

(o)

100.000000000%

0.500000000000000

11.838858282%

0.566311003197218

0.146750782%

0.567143165034862

0.000022106%

0.567143290409781

0.000000000%

False-Position

Iterations

true error

0.952380952

67.925984240%

0.607944265065116

7.194121018%

0.571658116501746

0.796064446%

0.567645088312370

0.088478152%

0.567199089558233

0.009838633%

True Error[log)

-
-

(true solution = 0.567143290409784)

Quadratic

'l =—#— NMewton-Raphson
——i— False-Position

|| =====-Poly. [Mewton-Raphson)

1 2

3 4 5

Iteration

EXAMPLE 2.10

Multiplicity > 1

Newton’s Method for a Problem with a Root of

Consider the function f(z) = z(1 — cos z), which has a root of multiplicity three at
x = 0. The following table shows the results of ten iterations of Newton’s method
applied to this problem with a starting value of py = 1. For comparison, the results
of the bisection method, starting from the interval [—2, 1] are shown in the third

column.

© 00 IO Ui W N =

[a—Y
)

0.6467039965
0.4259712109
0.2825304410
0.1879335654
0.1251658102
0.0834075192
0.0555942620
0.0370596587
0.0247054965
0.0164700517

Newton’s Method Bisection Method
—0.5000000000

0.2500000000

—0.1250000000

0.0625000000

—0.0312500000

0.0156250000

—0.0078125000

0.0039062500

—0.0019531250

0.0009765625




NEWTON RAPHSON EXTENDED FORMULA

(CHEBYSHEVES FORMULA OF 3"° ORDER)

Consider f(x) =0. Expand f(x) by Taylor series in the neighborhood of “x,”. We obtain after
retaining the first term only.

0 = f(x) = f(xo) + (x — x¢) f'(x0) + neglected = 0 = f(xo) + (x — x¢) f'(xo)

f(xo) o fxe)
fae T o)

This the first approximation to the root therefore

_ f(x0)
X1 = X9 — f’(xo) Cer rer eea wes e was es we aer s (1)

Again expanding f(x) by Taylor Series and retaining the second order term only

0=f(x)=f(xo)+(x—xo)f'(xo)+( — ) f"(x0)

=X —Xg=—

' (xq — xo)z "
0 = f(xq) = f(xo) + (x1 — x0) f'(x0) + [ (x0) ~ fx) = f(x1)

)2
0= f(xo) + (x1 - xo) f,(x()) + %f"(xo) e re aee re e e e (2)
Using eq. (1) in (2) we get
f(xo)+(x1—xo)f(xo)+1[ ;(( 0))] ['(x0) =0
f (o) + (1 = x0) f'(x0) = - ]’:,((x")] f"(x0)
1
x1 f'(x0) = xo f'(x0) — f(xo) — 2 [;(g;;))]z [ (x0)

_ _ f(x()) _ = f(x())] n
X1=%0 " 5a) T 2ipGor ] F0)

This is Newton Raphson Extended formula. Also known as “Chebysheves formula of third
order”



NEWTON SCHEME OF ITERATION FOR FINDING THE SQUARE ROOT OF POSITION NUMBER

The square root of “N” can be carried out as a root of the equation

x=N = x2=N =x2-N=0

Here f(x)=x*-N ; f(x,) =x3—N
fl(x) =2x ; f'(xn) = 2x,
: —n _ fC)
Using Newton Raphson formula Xni1 = Xp 1o

_ (xa-n)

= Xn+1 = Xn 2%,

1 N . .
= Xn41 =3 [x, + ;] This is required formula.

QUESTION
Evaluate V12 by Newton Raphson formula.
SOLUTION

Let x=V12 = x* =12 =x2-12=0

Here f(x)=x*-12; f(x)=2x ; f'(x)=2

X 0 1 2 3 4

F(x) -12 -11 -8 -3 4

Root lies between 3 and 4 and xy,=4

Now using formula Xns1 = %[xn + xﬁ] = Xp41 = %[xn + i—z NPT |
1 12 1 12

For n=0 X1=5 [xo + o = X1 =3 [4 + T]=3'5
1 12 1 12

For n=2 xz=E[x1+x—1]:>x2=5[3.5+E = 3.4643

Similarly x3 =3.4641 and x4 =3.4641

Hence V12 = 3.4641




NEWTON SCHEME OF ITERATION FOR FINDING THE “pth” ROOT OF POSITION NUMBER “N”

1
Considerx=Nrp = xP=N = x’ -N=0

Here f(x)=xP—N ;o f) =« —N
f'(x) = px?1 ; f' () =pai

Since by Newton Raphson formula

f(xn) (*xh—N) 1 ~1+1
Xp+1 = Xnp — F1(xn) = Xnp+1 = X — m = Xp41 = F [Pxﬁ - xfl + N]
1 (p-1)xP+N
Xn+1 = px—:"l [(p— Db +N] = x4 = > [%] Required formula for pth root.
n n

QUESTION
Obtain the cube root of 12 using Newton Raphson iteration.

SOLUTION

1
Considerx =123 = x3 =12 = x3-12=0

Here f(x)=x>—12 and f'(x) = 3x? ;o f(x) = 6x

For interval

X 0 1 2 3
F(x) -12 -11 -4 15

Root lies between 2 and 3 and x¢=3

Since by Newton Raphson formula for pth root.

_ 1 (p-Dxh+N _1[B-Dxd+12] _ 1 2x3+12
Xn+1 = ;[ xz_i‘ ] = Xny1 = 3 X1 ] - 5[ X2 ]
_ _ 1[2x3+12] _ 1[2(3)3+12] _
Put n=0 X1 = 3[ p ] =317 @r |= 2.4444

Similarly
Xy =2.2990, x3 =2.2895 , x4, = 2.2894 x5 = 2.2894

Hence 12 = 2.2894




DARIVATION OF NEWTON RAPHSON METHOD FROM TAYLOR SERIES
Newton Raphson method can also be derived from Taylor series.

For the general function “f(x)” Taylor series is

f(xni1) = fx) + f' (X1 — x) + %(xnﬂ —Xp)% e

As an approximation, taking only the first two terms of the R.H.S.
f(xni1) = f(xn) + f/(Xnp1 — x0)

And we are seeking a point where f(x) =0

That is If we assume f (x,+1) =0

= [ + () Xn1 — %) =0

This gives

 f)
@)

This is the formula for Newton Raphson Method.

Xn+1 = Xp



THE SOLUTION OF LINEAR SYSTEM OF EQUATIONS

A system of “m” linear equations in “n” unknowns “x{, x3, x3, ... ... ....., x;,” is a set of the
equations of the form

ag1x1 + Aq12Xy + aq3Xs3 T ApnXy = bl
ax1X1 + Az2XH + ajz3X3 T ArnXy = bz
A1 X1+ QaXy + Ap3X3 + e A X, = by

Where the coefficients “a;;” and “b;” are given numbers.

The system is said to be homogeneous if all the “b;” are zero. Otherwise it is said to be
non-homogeneous.

SOLUTION OF LINEAR SYSTEM EQUATIONS

A solution of system is a set of numbers “x{, x5, x3, ... ... ....., X;,” which satisfy all the “m”
equations.

PIVOTING: Changing the order of equations is called pivoting.
We are interested in following types of Pivoting

1. PARTIAL PIVOTING 2. TOTAL PIVOTING

PARTIAL PIVOTING

In partial pivoting we interchange rows where pivotal element is zero.

In Partial Pivoting if the pivotal coefficient “a;;” happens to be zero or near to
zero, the i column elements are searched for the numerically largest element. Let the jth row

wsthy

“i™" equation with the “j™” equation and

(j>i) contains this element, then we interchange the
proceed for elimination. This process is continued whenever pivotal coefficients become zero
during elimination.



TOTAL PIVOTING

In Full (complete, total) pivoting we interchange rows as well as column.

In Total Pivoting we look for an absolutely largest coefficient in the entire
system and start the elimination with the corresponding variable, using this coefficient as the
pivotal coefficient (may change row and column). Similarly, in the further steps. It is more
complicated than Partial Pivoting. Partial Pivoting is preferred for hand calculation.

Why is Pivoting important?

Because Pivoting made the difference between non-sense and a perfect result.

PIVOTAL COEFFICIENT

For elimination methods (Guass’s Elimination, Guass’s Jordan) the coefficient of the first
unknown in the first equation is called Pivotal Coefficient.

BACK SUBSTITUTION

The analogous algorithm for upper triangular system “Ax=b” of the form

aqq aAqz ..o . Qqp X1 bl
0 (1 B/ | X
s S22 Zn 2| = bzz Is called Back Substitution.
0 0 ...... ann xn bn
bi—Yj-i+1 aijXj ,
The solution “x;” is computed by  x; = M 0=1,2,3, . n
FORWARD SUBSTITUTION

The analogous algorithm for lower triangular system “Lx=b” of the form

111 0 0 x1 b1

X
21 Lo w0 2= b:Z Is called Forward Substitution.
lnl an """ lnn Xn bn

i i b~ lijxj
The solution “x;” is computed by  x; = ——2

lii



THINGS TO REMEMBER
Let the system AX = B is given

e If B # 0 then system is called non homogenous system of linear equation.

e If B =0 then AX = 0 then system is called homogenous system of linear equation.
e If the system AX = B has solution then this system is called consistent.

e If the system AX = B has no solution then this system is called inconsistent.

RANK OF A MATRIX

The rank of a matrix ‘A’ is equal to the number of non - zero rows in its echelon form or the
order of I, in the conical form of A.

KEEP IN MIND

e TYPE I: when number of equations is equal to the number of variables and the system
AX = B is non — homogeneous then unique solution of the system exists if matrix ‘A’
is non- singular after applying row operation.

e TYPE Il: when number of equations is not equal (may be equal) to the number of
variables and the system AX = B is non — homogeneous then system has a solution if
rank A = rankA,

e TYPE lll: a system of ‘m’ homogeneous linear equations AX = 0 in ‘n’ unknown has a
non- trivial solution if rank A < n where ‘n’ is number of columns of A.

e TYPEIV:if rank A = rankA, < number of unknown then infinite solution exists

e TYPEV:ifrank A +# rankA;, then no solution exists



GUASS ELIMINATION METHOD

ALGORITHM

¢ In the first stage, the given system of equations is reduced to an equivalent upper
triangular form using elementary transformation.

¢ Inthe second stage, the upper triangular system is solved using back substitution
procedure by which we obtain the solution in the order "x,, x;,_1, .. «e. o0 ... X2, X1"

REMARK

Guass’s Elimination method fails if any one of the Pivotal coefficient become zero. In such a
situation, we rewrite the equation in a different order to avoid zero Pivotal coefficients.

QUESTION  Solve the following system of equations using Elimination Method.
2x+3y—z=5
4x+4y—-3z=3

—2x+3y—-z=1

SOLUTION We can solve it by elimination of variables by making coefficients same.
2x+3y—2z2=5 . (0)
4x+4y —3z2=3 ..ot e e e e (D)
—2x4+3y—z=1 ..o is it ve e (TED)
Multiply (i) by 2 and subtracted by (ii) 24+ Z =T .ottt e e a2 (D)
Adding (i) and (iii) 6 —2Z =06 ...ccocei e et et et e e e e e e (D)
Now eliminating “y” Multiply (iv) by 3 then subtract from (v) z=3
Using “z” in (iv)weget y =2  and Using “y”, “z” in (i) we get x=1

Hence solution is x=1y=2,z=3



QUESTION

Solve the following system of equations by Guass’s Elimination method with partial pivoting.
x+y+z=7
3x+3y+4z =24

2x+y+3z=16

SOLUTION
1 1 1] 7
[3 3 4 [y =[24]
2 1 3tz 16
3 3 4]x [24 (1 1 % x; [8 )
2 1 3llz 16 2 1 3]'2 16
4
4 1 1 il
1 1 |x 8 I[ | 18
3Lz 16 z 0
2 1 3 lo -1 %

2" row cannot be used as pivot row as a,, =0, So interchanging the 2" and 3" row we get

11 3
iy g
0 -1 = ly =10 ~R23
31, 1
0 0 !
3
Using back substitution
! 1 3
—_—— —_ — - =
32 z
1
—y+§Z:0 :}y:S ~zZ=3
4
Xtytzz=8 ==x=3 ~y=3 ,2z=3



QUESTION

Solve the following system of equations using Guass’s Elimination Method with partial
pivoting.

0x1 + 4—x2 + 2x3 + 8X4_ =24
4-x1 + 10x2 + 5x?, + 4'X4_ =32
4-x1 + 5x2 + 65x3 + 2x4 = 26

9x1 + 4‘x2 + 4‘x3 + 0x4 =21

SOLUTION
0 4 2 8][*1 24
4 10 5 4||*z|_[32
4 5 65 2||X3 26
9 4 4 011*% 21

9 4 4 07[*1] [21
4 10 5 4||x| |32
=14 5 65 2||xs|T|26] R4
0 8

X4

1 4/9 4/9 0] [x 21
4 10 5 4| |x2|_|32 1
s 5 65 2||*| 7|26 Ry
0 4 2 8llx 24
1 4/9 4/9 0] [*1 2.3333
0 4 2 8| x| | 24
s 5 65 2||%|T| 26 Ra4
4 10 5 4] |xs 32
- 4 4
1 = 20
9 9 | X1 2.3333
0 4 2 8 | X, 24
29 85 — ~ — ~ —
= 0 ? E 2 X3 16.6668 R3 4'R1 and R4_ 4'R1
X
_ 0 79_4 % 0 4 22.668
1 4/9 4/9 0 X1 2. 3333
0 1 1/2 2 X, 1
= ~~-R;
0 29/9 85/18 2 X3 16. 6668 4
0 74/9 29/9 0 X4 22.668




[ 1 S5 0 1 [¥1] [ 2.3333
| 0 1 % 2 | [*¥2[=]| o _2 _74
| o 0 3111 -4 444 J X3| | -2.6665 Rs =5 Rz and ~Ry = 'R,
0 0 —0.889 16.444 | X4l 1-26.665
1 4/9 4/9 0 x4 2.3333
0 1 12 2 x2| 6 Ry N
=1 o 0 1 —1428| |x3|7|-0.857 3111 @nd ~R4 + 0.889R,
0 0 0 15.175 | [xa] [-27.427
N 15.175x, = —27.427
= x'4, = —1 8074’
= x3 — 1.428x, = —0.857
= x3=-3.438 . x,=-1.8074
1
= X +EX3+2x4=6
— x, =11.3338 nx,=-1.8074 , x3=—3.438
+ 1 + 1 2.333
= X1+ -X +=-x3 =2,
1 9 2 9 3
= x;=-1.1762 ~x,=11.3338 , x3=—3.438

Hence required solutions are

x;=-1.1762 , x, =11.3338 , x3=-3.438 , x, = —1.8074



GUASS JORDAN ELIMINATION METHOD

The method is based on the idea of reducing the given system of equations "Ax = b"toa
diagonal system of equations "Ix = b" where "I" is the identity matrix, using row operation.
It is the verification of Gauss’s Elimination Method.

ALGORITHM

1) Make the elements below the first pivot in the augmented matrix as zeros, using the
elementary row transformation.

2) Secondly make the elements below and above the pivot as zeros using elementary
row transformation.

3) Lastly divide each row by its pivot so that the final matrix is of the form

1 0 0 dy
[010d2]

0 0 0 ds

Then it is easy to get the solution of the systemas x; =dq,x; =d;,x3 =d3

Partial Pivoting can also be used in the solution. We may also make the pivot as “1” before
performing the elimination.

ADVANTAGE/DISADVANTAGE

The Guass’s Jordan method looks very elegant as the solution is obtained directly. However,
it is computationally more expensive than Guass’s Elimination. Hence we do not normally use
this method for the solution of the system of equations.

The most important application of this method is to find inverse of a non-singular matrix.

What is Gauss Jordan variation?

In this method Zeroes are generated both below and above each pivot, by further
subtractions. The final matrix is thus diagonal rather than triangular and back substitution is
eliminated. The idea is attractive but it involves more computing than the original algorithm,
so it is little used.



QUESTION
Solve the system of equations using Elimination method
x+2y+z=28
2x+3y+4z=20

4x + 3y +2z=16

ANSWER

1 2 1 8

2 3 4 :20

4 3 2 16
1 2 1 8
0 -1 -2 4 RZ _R1 and R3 —4R1
0 -5 -2 —-16
1 2 1 8
01 -2 :: —4 ] (=1)R, and (—1/5)R;
0 1 -2/5 16/5
1 2 1 8
01 -2 : —4 R; — R,
0 0 12/5 36/5
1 2 1 8
01 -2 : -4 (5/12)R;
0 0 1 3
1 2 O 5]
0 0 1 3
1 0 O 1]
0 1 0 :2 R, — 2R,
0 0 1 3l

Hence solutionsare x=1,y=2,z=3



MATRIX INVERTION

A"n X n" matrix "M" is said to be non-singular (or Invertible) if a "n X n" matrix "M~1" exists

with "MM1" = "M~1M" = I then matrix "M 1" is called the inverse of"M". A matrix
without an inverse is called Singular (or Non-invertible)

MATRIX INVERSION THROUGH GUASS ELIMINATION

Place an identity matrix, whose order is same as given matrix.
Convert matrix in upper triangular form.

Take largest value as Pivot.

Using back substitution get the resulit.

P wWwNPRE

NOTE: In order to increase the accuracy of the result, it is essential to employ Partial
Pivoting. In the first column use absolutely largest coefficient as the pivotal coefficient (for
this we have to interchange rows if necessary). Similarly, for the second column and vice
versa.

MATRIX INVERSION THROUGH GUASS JORDAN ELIMINATION

Place an identity matrix, whose order is same as given matrix.
Convert matrix in upper triangular form.

No need to take largest value as Pivot.

Using back substitution get the resulit.

P WNPRE

1 1 1
QUESTION : Find inverse using Guass Elimination Method A=14 3 —1]

3 5 3
ANSWER
11 1 100 [43 -1010 12 =0 ; 0],
43 -1:0 1 0/=[1 1 1:i1 0 0] Rz=|1 1 1i1 o o| 3R
35 3 001 [35 3 001 35300 1
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QUESTION

1 1 1
Find inverse using Guass’s Jordan Elimination Method A =1[4 3 —1]
3 5 3
ANSWER
11 1 1 0 0
4 3 —-1:0 1 O
35 3 001
1 1 1 1 0 0
0 -1 -5:—4 1 0 R, —4R; and R; — 3R,
0 2 0O -3 0 1
1 1 1 1 0 o
0 1 5:4 -1 0 —1R,
0 2 0 -3 0 1
1 1 1 1 0O o
01 5 4 -1 0 R3; — 2R,
0 0 -10 -11 2 1
1111 0 0]
: 4 -1 0 _1
0 1 5 ‘a1 1 10R3
0 0 1 5 5 10
R SR U
1 1 0 10 5 10
0 1 0:2 0 > | Ry—RyandR,—5R;
0011 1 1
10 5 10
7 1 2
1 0 0 53 5 15|
001 u 1 1
10 5 10
Hence
7 1 2
|5 5 3]
-1 |3 1
4 2 0 2
o1 _1
10 10




1 0 2
QUESTION: FindA 1 ifA=|0 2 1]
1 -1 1

SOLUTION: we first find the co-factor of the elements of A
an=(—-1)?(2+1)=3

a= (—1)3(-1=1

a;s=(—1D*(0-2)= -2

axn=(—1)3(0 + 2)=-2

an=(—-1)*(1-2)=-1

axn=(-1)°%(-1-0)=1

az=(-1D*(0-4)= —4

an=(—1)°(1-0)=-1

as3= (_1)6 2-0)=2

a;; Qg Qi3 3 1 -2
Thus [Aii]3x3= A1 Az Q3| =|-2 -1 1
az; das; dasg -4 -1 2
3 -2 -4
adjA=[A'], . =[1 -1 -1 and |A|=-1
-2 1 2
-3 2 4

So A1 =ﬁ adjA =

-1 1 1] after putting the values.
2 -1 -2



HESSENBERG MATRIX: Matrix in which either the upper or lower triangle is zero except
for the elements adjacent to the main diagonal.

If the upper triangle has the zeroes, the matrix is the Lower Heisenberg and vice versa.

SPARSE: A coefficient matrix is said to be sparse if many of the matrix entries are
known to be zero.

ORTHOGONAL MATRIX: A "n X n" matrix “M” is called orthogonal if
MMt =1 ie A'=A"1

PERMUTATION MATRIX

A'"'n X n" matrix P = [Pi]-] is a permutation matrix obtained by rearranging the rows of the
identity matrix “I,,”. This gives a matrix with precisely one non-zero entry in each row and in
each column and each non-zero entry is “1”

1 0 0
For example P=10 O 1]

0 1 0
CONVERGENT MATRIX

We call a "n X n" matrix “M” convergent if limk_,oo(Mk),-j = 0 foreachi, j=0,1,2..n

; 0 @ o
Consider M = |7 = Mk= k 1
k

ri ey

. 1 . .
Then llmk—)OO(E)k =0 and lim,_ 2,‘% = 0 = M is convergent.

LOWER TRIANGULATION MATRIX

A matrix having only zeros above the diagonal is called Lower Triangular matrix.
(OR)

A "n X n" matrix “L” is lower triangular if its entries satisfy l;; = 0 fori <j

ly 0 0
i.e. [121 122 0]

l31 l32 l33



UPPER TRIANGULATION MATRIX
A matrix having only zeros below the diagonal is called Upper Triangular matrix.
(OR)

A "n X n" matrix “U” is upper triangular if its entries satisfy u;; = 0 fori>j

U1 U2 Uj3
i.e 0 up uy;
0 0 U33

CROUTS REDUCTION METHOD

In linear Algebra this method factorizes a matrix as the product of a Lower Triangular matrix
and an Upper Triangular matrix.

Method also named as Cholesky’s reduction method, triangulation method,
or LU-decomposition (Factorization)

ALGORITHM
For a given system of equations Y} x; =m;m € Z

1. Construct the matrix “A”
Use “A=LU” (without pivoting) and “PA=LU” (with pivoting) where “P” is the pivoting
matrix and find “u;;, 1;;”

3. Use formula “AX=B” where “X” is the matrix of variables and “B” is the matrix of
solution of equations.

4. Replace “AX=B” by “LUX=B” and then put “UX=2" i.e. “LZ=B"”

5. Find the values of “Z;,;” then use “Z=UX" find “X;," ; i=1, 2, 3, ....... n

ADVANTAGE/LIMITATION (FAILURE)

1. Cholesky’s method widely used in Numerical Solution of Partial Differential Equation.
2. Popular for Computer Programming.
3. This method fails if a;; = 0 in that case the system is Singular.



QUESTION

Solve the following system of equations using Crout’s Reduction Method
5x1 —2x,+x3=4
7x1+x, —5x3 =8

3x1 + 7x2 + 4'X3 =10

ANSWER
5 -2 1 One of the
Let A=|7 1 -5 di Is of Lor U
3 4 iagonals of L or
must be 1
Step I....
[A] = [L][U]

5 -2 1 Ly, 0 0711 wuy, ugs
7 1 =5(=|lzx Lz 0[[0 1 1y
3 7 4 l31 l3 I33110 0 1

After multiplication on R.H.S

5 -2 1 l11 li1uq; li1uq3
7 1 =5(=|ly Ljup+1y l31u43 + lzus;
3 7 4 l317 L1ugy +13p  l3quq3 + lups + 33

=l =5, lLby=713,=3

= lj1U12 =—2 = Su;p=-2 = u;, =-2/5

= ljjuiz3 =1 = 5Su;3=1 = u;3=1/5

= Liup+lhp=1 =7(-2/5)+1l,,=1 =1, =19/5
= U+ 13, =7 = 3(-2/5)+1l3,=7 =13,=41/5

1 19
= l1uy3 + lus = -5 =7 (E) + (?) Uy3 = =5 = uy3 = -32/19



= I+l +ls =4 =3(5)+(3)(32) +ls =4 = 1 =327/19

Stepll...  Put [A][X] = [B] = [L][U][X] = [B]

Put [U] [X] = [2] [L][Z] = [B]

5 0 0 Zy
[7 19/5 0 ”ZZ] -
3 41/5 327/19)lz3

4
8]
10

=5z,=4 =2, =4/5=7z+22,=8 =7(3)+Tz,=8=2=12/19

41 327

3z, + n 10 3<4)+41 12, 327 10 46/327
- P —_— = Y — —_—(— = - =
21T 52T g 78 5) v 5G9 T 19 % Z3 /
Step lll....  Since [U][X] =[2Z]
1 U2 Uq3 X1 41
0 1 u23 X2 =122
0 0 1llxzl Iz
1 -2/5 1/5 1[*1 4/5
[0 1 —32/19] [xz] —|12/19
0 o 1 x3] l46/327
= x3 = 46/327
32 12 32 ( 46) 12 284/327
- —_—— = — = —_— | = — - =
*2779% 719 T *2 7 19\327) T 19 *2 /

- (Z)x ple oty (Z)(284)+1(46)_4
1 5)72 1573 75 1 5/) \327 53277 5

= x1 = 366/327
Hence required solutions are

= x, = 366/327, x, = 284/327, x3 = 46/327



DIAGONALLY DOMINANT SYSTEM

Consider a square matrix "A = {a;;}" then system is said to be Diagonally Dominant if

la;| = Z?=1j¢i|aij| ;i=1,2,3, .

If we remove equality sign, then “A” is called strictly diagonally dominant and ‘A’ has the
following properties

e ‘A’isregular, invertible, its inverse exist and Ax = b has a unique solution.
e Ax=b can be solved by Gaussian Elimination without Pivoting.

7 2 0 6 4 -3
For example A=|3 5 —-1| and B=|4 -2 0
0 5 -6 3 0 1

Then non- symmetric matrix ‘A’ is strictly diagonally dominant because
17l > 12[+ 0] 5 IS[>3[+[|-1] ; |—6]| =[6] > |0] + |5]
But ‘B’ and ‘A" are not strictly diagonally dominant (Check!)

NORM: A norm measures the size of a matrix.

Let "x € R™ or x € R™™" then ||x|| satisfies

e x|l =0 e Iffx=0then ||x|]| =0
e |lax|| = |a|||x|| Where ‘@’ is constant.
e |lx+yll <llx|l +|lyll i.e.Triangular inequality

INFINITY NORM || X]|
The infinity (maximum) norm of a matrix ‘X’ is

|X||c = maximum of absolut values of components of"X" = maxq<j<n|X;|

1 2 3
ConsiderX =14 5 6]
7 1 2
1+24+3
|X||c = maximum of absolute row sum = max|4+5+ 6| =15
7+14+2




EUCLIDEAN NORM || X]||,

The Euclidean norm for the matrix ‘X’ is
1

X1l = [Zi, xiz]E

We name it Euclidean norm because it represents the usual notation of distance from the
origin in case xisin R = R, R? or R®

Take square of each

Consider element, add &then
1 2 3 sauare root
X=14 5 6
7 1 2 O

o
o
IXll,=(1+4+9+16+25+36+49+1+4)"/% =12

USEFUL DEFINATIONS

Let “x,” be an approximate solution of the linear system “Ax =b” then
The residual is the vector r = b — Ax,
The backward error is the norm of residual ||r = b — Ax,||

The forward erroris ||x — x4l o

The relative backward error is Irlleo

lIblleo

lx—xqllco

lIxlleo

The relative forward error is

Relative forward error

And error magnification factor is equals to -
Relative backward error

CONDITION NUMBER

For a square matrix ‘A’ condition number is the maximum possible error magnification factor
for solving Ax=b

Or The condition number of the "n X n" matrix is defined as
cond (4) = ||4].]|471|

Remember: Identity matrix has the lowest condition number.



ILL CONDITION LINEAR SYSTEM

In practical application small change in the coefficient of the system of equations sometime
gives the large change in the solutions of system. This type of system is called ill-condition
linear system otherwise it is well-condition.

PROCEDURE (TEST, MEASURE OF CONDITION NUMBER)

¢ Find determinant. If system is ill condition, then determinant will be very small.
+* Find condition number.

¢ If condition number is very large then system of condition is ill-condition rather it is
well-condition. Also determinant will be small.

EXAMPLE: Consider Az[z 1

o 1] = |4| = 0.02 and = ||A|l, = 3.165

_adjA 1

A—l
4] 0.02

101 -1)_150.5 ~50
-2 217 1-100 100

1
and [|A7'||, = ((50.5)% + (—=50) + (~100)* + (100)*)Z = 158.273
Now condition number = ||4]|. ||A_1||= 500.93 (very large)

Since condition Number is very large therefore system will be ill-condition.

11l Conditioning Example

Here is a simple example of ill conditioning. Suppose that Ax = b is supposed to be

2x+6y=8 and 2x+6.00001y= 8.00001

The actual solution is x = 1, y = 1. Suppose further that due to representation error,
the system on the machine is changed slightly to

2x+6y=8 and 2x +5.99999y=8.00002

The solution to this system is x = 10, y = -2, so you think the answer is (10,-2). When
you check the answer by plugging these values into the actual system, you get

2(10) + 6(-2)=8 and 2(10) + 5.99999(-2)=7.99998

This seems to be acceptable, but of course (10,-2) is very far from the actual solution
(1,1). This indicates that the system is badly ill conditioned.
Here are some things to consider if you have an ill conditioned system:



« To identify if the matrix is ill conditioned, you can try 2 things. First, compute cond(A).
This is relatively expensive and sometimes hard to interpret because the value may be
in an intermediate range. Second, you can introduce deliberate “representation errors”
by slightly perturbing one or more elements in A. Call the new matrix A?, and solve Ax?
= b. If x = x0, then there is probably no ill conditioning. The danger here is that you
might be unlucky, and chose the wrong element to perturb. But if you try this several
times with different elements and all the solutions are about the same, then you have
confidence that the matrix is well conditioned.

EXAMPLE

If the system really is ill conditioned, there is no simple fix. Consider using Singular Value

Decomposition (SVD llI-Conditioned Matrices
Consider systems X+y=2 THEN x+1.001y=2 x + 1.001y = 2.001
The system on the left has solution x = 2, y = 0 while the one on the right has solution
x =1, y = 1. The coefficient matrix is called ill-conditioned because a small change in
the constant coefficients results in a large change in the solution. A condition number,
defined in more advanced courses, is used to measure the degree of ill-conditioning of a
matrix (= 4004 for the above).

In the presence of rounding errors, ill-conditioned systems are inherently difficult to
handle. When solving systems where round-off errors occur, one must avoid ill-conditioned
systems whenever possible; this means that the usual row reduction algorithm must be
modified. Consider the system: .001x+y=1 AND x+y=2
We see that the solution is x = 1000/999 = 1, y = 998/999 = 1 which does not change much if
the coefficients are altered slightly (condition number % 4).

The usual row reduction algorithm, however, gives an ill-conditioned system. Adding a
multiple of the first to the second row gives the system on the left below, then dividing by
-999 and rounding to 3 places on 998/999 =.99899 = 1.00 gives the system on the right:

001x+y=1 001x+y=1
-999y = -998 y=1.00

The solution for the last system is x = 0,y = 1 which is wildly inaccurate (and the condition
number is = 2002).

This problem can be avoided using partial pivoting. Instead of pivoting on the first
non-zero element, pivot on the largest pivot (in absolute value) among those available in the
column.

In the example above, pivot on the x, which will require a permute first:

X+y=2 X+y=2 X+y=2

001x+y=1 .999y =.998 y=1.00
where the third system is the one obtained after rounding. The solution is a fairly
accurate x=1.00,y = 1.00 (and the condition number is 4).



JACOBI’'S METHOD

Method also known as iterative method, simultaneous displacement method. We want to
solve ‘Ax = b’ where "A € R™™" and ‘n’ is very large, ‘A’ is Sparse (with a large percent of
zero entries) as well as ‘A’ is structured (i.e. the product ‘Ax’ can be computed efficiently). For

this purpose, we can easily use Jacoby’s.

ALGORITHM

We want to solve Ax=b writes it out

aq11X1 +aqaxy + -t +a1nxn = b1

Ax1X1 + QX + oo FH A Xy = bz
: : + o =i

Ap1X1 + QuaXy + oo A Xy = by,

Rewrite it in another way

1
|( X1 = a_ll(bl —Aq12X2 — A13X3 — " e - alnxn)
1
{ xZ = a(bz — a21x1 - a23x3 Tt s wes aan - aann)
| L . .
kxn = a—nn(bn —Ap1 X1 — Ap2Xp — e iin s - an(n_l)xn_l)

Or in compact form

— 1 n ] —
Xi = a_u(bl = Lj=1j=#i a,-]-x]-) i=123.......n

This gives the Jacoby’s iteration.

Choose a start point (initial guess) i.e. x0 = (0,0,0)

Apply X**1 = BX* 4+ C where C;; = 2 and B can be defined as

ai]
aij . .
-4 i+
Bi]- = { ai; J
0 i=j
STOP CRITERIA

X close enough to X*~1 for example || X* — X*~1|| < € for certain vector norms.

Residual 7 = Ax* — b is small for example ||r¥|| < €



CONVERGENC CRITERIA

Sufficient condition for the convergence of Jacobi’s is

n
Xl <1 or lagl> ) |ayl
j=Lj#i

i=12 ..........n

Jacobi method also called method of simultaneous displacement why?

k+1

Because no element of x; " is in this iteration until every element is computed.

KEEP IN MIND

e Jacobi method is valid only when all “a;s” are non-zeroes. (OR) the elements can
rearrange for measuring the system according to condition. It is only possible if [A] is

invertible i.e. inverse of ‘A’ exist.

e For fast convergence system should be diagonally dominant.

e Must make two vectors for the computation “X*” and “X*+1”

e System (method) is important for parallel computing.

QUESTION:

the first five iterations.
83x+ 11y — 4z =95
3x+52y+ 13z =104

3x+8y+29z=71

ANSWER
- 95 11 4
= S — _
: 83 83” 83”7
‘e 104 7 13
(i) = Y=% "% 52
71 8 3
(iii) = =———y——

Find the solution of the system of equation using Jacobi iterative method for



Taking initial guess as (0, 0, 0) and using formula X**1 = BXk + C

Put k = O for first iteration

w2 U (0) + 4 0) = % _ 1.1446
* =83 83 g3’ "g83
104 7 13 104
y 52 520 50 =53
w_’1_8 0 3 0—71—24483
2 =597 29055 =55=2
= (x®,  y®,  zW)=(1.1446, 2,  2.4483)
Put k = 1 for second iteration
95 11 4
@ =——_-"(2)+—(2.4483) = 0.9976
*P =83 g3@® g3l )
@ 104 7 (1.4466) 13 (2.4483) = 1.2339
Y T52 52\ 52 -
(2>—71 8 2 3 1.1446 —71—17781
27 =397 29®) ~ 7391 )=29=1
= (@,  y@,  z®)=(0.9976, 1.2339, 1.7781)
Put k = 2 for third iteration
x® = 95 11(1 2339) + 4 (1.7781) = 1.0668
83 83 83 o
104 7 13
B =———(0.9976) ——(1.7781) = 1.4212
y 52 52 (0:9976) — 55 (1.7781)
®-’1_8 1.2339 3 0.9976) = 2.0046
Z7 =59 291 ) =290 ) =2
= (x®,  y®,  z®)=(1.0668 1.4212, 2.0046)
Put k = 3 for fourth iteration
- 23 11(1 4212) + 4 (2.0046) = 1.0529
x\ = ———(1. — (2. =1.
83 83 83

104 7 13
@__*__ _ _
y =5 5z (1-0668) — — (2.0046) = 1.3553



z® = 1 1.4212) 1.0668) = 1 1.9451
29 29( ( 29

N (x®,  y®, Z(4)) =(1.0529, 1.3553, 1.9451)

Put k = 4 for fifth iteration

95 11
Gy 22 _ - — =
x 5383 (1.3551) +3 (1 9451) = 1.0587
104 13
y®) = 5—2——(1 0529) ——(1 9451) = 1.3726
z0®) = E——a 3553) —1(1 0529) = 1.9655
29 29 B
= (x®, y®,  z®)=(1.0587, 1.3726, 1.9655)

GUASS SEIDEL ITERATION METHOD

Guass’s Seidel method is an improvement of Jacobi’s method. This is also known as method
of successive displacement.

ALGORITHM

In this method we can get the value of “x;”from first equation and we get the value of “x
by using “x4” in second equation and we get “x3” by using “x;” and “x,” in third equation
and so on.

ABOUT THE ALGORITHM

n kn n_k+1n

¢ Need only one vector for both and "x save memory space.
¢ Not good for parallel computing.

e Converge a bit faster than Jacobi’s.



How Jacobi method is accelerated to get Guass Seidel method for solving system of Linear
Equations.

In Jacobi method the (r+1)™" approximation to the system Yj=1,j=i @ijXj = by is given by

b; aij , .
tl=—t_yn Jx.rj=1,23,..........n from which we can observe that no
‘ aii J=LiFl g,

element of x{“ replaces x} entirely for next cycle of computations. However, this is done in

Guass Seidel method. Hence called method of Successive displacement.

QUESTION: Find the solutions of the following system of equations using Guass Seidel

method and perform the first five iterations.

1 1 1
xl—sz—Zx3 =§
1 N 1 _1
g 1T 2Tt T g
1 N 1 _1
4x1 X3 4X4_—4
1 1 1
—sz —ng +x4 :Z

ANSWER
x1=0.54+0.25x, + 0.25x3
Xy =0.54+0.25x; + 0.25x,
x3 =0.25+ 0.25x; + 0.25x,
x4 =0.25+0.25x, + 0.25x3

For first iteration using (0,0, 0, 0) we get

x(” = 0.5+ 0.25(0) + 0.25(0) = 0.5
xY = 0.5 4+ 0.25(0) + 0.25(0) = 0.5
x’ = 0.25 + 0.25(0) + 0.25(0) = 0.25
2P = 0.25 + 0.25(0) + 0.25(0) = 0.25

For second iteration using (0.5,0.5,0.25,0.25) we get



x{Y = 0.5+ 0.25(0.25) + 0.25(0.25) = 0.5
xY = 0.5+ 0.25(0.5) + 0.25(0.25) = 0.5
xV = 0.25 + 0.25(0.5) + 0.25(0.25) = 0.25

x” = 0.25 + 0.25(0.25) + 0.25(0.25) = 0.25

For third iteration using (0,0, 0, 0) we get

x" = 0.5+ 0.25(0) + 0.25(0) = 0.5
xY = 0.5+ 0.25(0) + 0.25(0) = 0.5
x’ = 0.25 + 0.25(0) + 0.25(0) = 0.25
xY = 0.25 + 0.25(0) + 0.25(0) = 0.25

For fourth iteration using (0,0, 0, 0) we get

x" = 0.5+ 0.25(0) + 0.25(0) = 0.5
xY = 0.5+ 0.25(0) + 0.25(0) = 0.5
2’ = 0.25 + 0.25(0) + 0.25(0) = 0.25

xY = 0.25 + 0.25(0) + 0.25(0) = 0.25

For fifth iteration using (0, 0,0, 0) we get

x¥ = 0.5+ 0.25(0) + 0.25(0) = 0.5
xY = 0.5 4+ 0.25(0) + 0.25(0) = 0.5
x’ = 0.25 + 0.25(0) + 0.25(0) = 0.25

x(” = 0.25 + 0.25(0) + 0.25(0) = 0.25



EIGENVALUE , EIGNVECTOR

Suppose ‘A’ is a square matrix. The number ‘A’ is called an Eignvalue of ‘A’ if there exist a

non-zero vector ‘x’ such that

Ax=2x (or) (A—ADx=0

And corresponding non-zero solution vector ‘x’ is called an Eigenvector.

Largest Eigenvalue is known as Dominant Eigenvalue.

CHARACTERISTIC POLYNOMIAL

The polynomial defined by "P(4) = det(4 — AI)" is called characteristics polynomial.

SPECTRUM OF MATRIX

Set of all eignvalues of ‘A’ is called spectrum of ‘A’.

SPECTRAL RADIUS

The Spectral radius P(A) of a matrix ‘A’ is defined by

P(A) = max|A|

SPECTRAL NORM

Write characteristic equation of

4 1 -1
2 3 -1

-2 1 5

Where ‘A’ is an Eignvalue f ‘A’.

Let "A;" be the largest Eigenvalue of AA™ or A*A where A" is the conjugate transpose of “A”

then the spectral norm of the matrix “A” is defined as

a(A) = /2,

DETERMINANT OF A MATRIX

The determinant of “n X n” matrix is the product of its Eigenvalues.

TRACE OF A MATRIX

The sum of diagonal elements of “n X n” matrix is called the Trace of matrix “A”

This is also defined as the sum of Eigenvaluse of a matrix is Trace of it




THE POWER METHOD

The power method is an iterative technique used to determine the dominant eigenvalue of a
matrix. i.e the eigenvalue with the largest magnitude.

Method also called RELEIGH POWER METHOD

ALGORITHIM

I.  Choose initial vector such that largest element is unity.
Il.  This normalized vector V! ia premultiplied by ‘nxn’ matrix [4].
Ill.  The resultant vector is again normalized.
IV.  Continues this process untill required accuracy is obtained.
At this point result looks like U® = [4] VKD = q, y®
Here ‘q,.’ is the desired largest Eigen value and ‘v is the corresponding EigenVector.

CONVERGENCE

Power method Converges linearly , meaning that during convergence, the error decreases by
a constant factor on each iteration step.

Question
How to find smallest Eigen value using power method?
Answer
Consider
[A]X = AX
[A~1][A]X = 2[A71]X
X = A[A71X

= [A7x = %X Required



Example

Find the Eigen value of largest modulus and the associated eigenvector of the matrix by
power method

Solution:
Let initial vector V(® as (0,0,1)7

You can take any other instead of (0, 0, 0) which consist “0” and “1” like (1,0, 0) and
(1,1,1)

(1). Using Formula U® = [A][V¥1] for K=1

U = [A][V(")] =14 3 5

9/9 0.222
]—[]—9[5/9]—9[0556] q vV
3 2 9

(2). Using Formula U® = [A][V¥1] for K=2

232]

2 3 377[0.222 4.112 0.382
U® =[Alv®W =[4 3 5 []|0.556|=]|7.556 | =10.778|0.701|=q, VP
3 2 9 1 10.778 1
(3). Using Formula U® = [A][V*"1] for K=3
2 3 31[0.382 4.867 0.421
UB=[AIV® = |4 3 5|[0.701|=(8.631|=11.548 |0.747| = q3V®
3 2 9 1 11.548 1

(4). Using Formula U® = [A][V*~1] for K=4

2 3 37[0.421 5.083 0.432
UD=[AIv® = |4 3 5][0.747|=]8.925 [=11.757(0.759| = q, V¥
3 2 9 1 11.757 1




(5). Using Formula

U™ = [A][VF1] forK=5

2 3 31[0.432 5.141 0.435
US=[AIV® = |4 3 5/([0.759|=(9.005 |=11.814 |0.762| = qs V®
3 2 9 1 11.814 1
(6). Using Formula U® = [A][V*¥~1] for K=6
2 3 31[0.435 5.156 0.436
U®=[Alv® =4 3 5[|0.762|=|9.026 | =11.829(0.763| = q,V©®
3 2 9 1 11.829 1
(7). Using Formula U® = [4][V*"1] for K=7
2 3 31[0.436] [5.161 0.436
UD=[Alv® = |4 3 5||0.763|=| 9.033 |=11.834 [0.763| = q, V7
3 2 9 1 11.834 1

So largest Eigen value is q = 11.834 and corresponding Eigenvector is

0.436
V=(0.763| accurate to 3 decimals.
1
QUESTION:
1 -3 2
A=14 4 —1]
6 3 5
SOLUTION

Put A1=B= A=

a11=(—1)%(20 + 3)=+23

a1= (—1)3(20 + 6)=-26
a;s=(—1)*(12-24) = -12

az=(—-1)3(-15-6)=21

azz=(_1)4 (5—-12)=-7

Find the smallest Eigen value of the matrix by power method.

(1)

ax=(—1)%(3+18) = —-21
an=(-1*(-8+3)= -5
ap=(-1)°(-1-8)=9

a;=(—1)°(4 +12) =16



23 21 -5
adjA=|-26 -7 9
~12 -21 16
1 -3 2
and |A| = 4 —1|=1(20+3)+3(20+6)+2(12—24) =77
6 3 5
I[23/77 2100 75/04]
-1_|-26 _7 9
1= B=A""=|7%%/7, l77 /77|

|=12/,, —21/,, 16/,.1

Now Taking Initial vector as V(® = (0,0, 1)T

2 22 _5
. o I A 977| 0 —0.06 —0.29] -
UP=[BIV® = |-= —— — 110|=]0.12|=0.21|0.57 [= q,V
l—E 21 EJ 1 0.21 1
77 77 77
0.30 0.27 -0.06][-0.29 0.01 '0.06
U®=[Blv® =|-0.34 —-0.09 0.12 057 =10.17[=0.17| 1 |=q,V?
-0.16 —-0.27 0.21 0.10 0.59

0.30 0.27 —0.06] [O. 06 0.25 1
UB=[BlVv® = |-0.34 —-0.09 0.12 —0.04| =0.25 |0.16| = q3V3

-0.16 -0.27 -0.21 059 -0.16 0.59

0.30 0.27 -0.06 1 0.30 1
UM=[BlV® = [-0.34 -0.09 0.12 | [0.16]/=[-0.28| =0.30 [-0.93| = q,V@¥
—-0.16 —0.27 0.12110.54 —0.07 —0.23
0.30 0.27 -0.06 1 0.06 1
U®=[BlV® = [—0.34 —0.09 0.12”—0.93]=[—0.28]=0.06 —4.67| = qsV®
-0.16 -0.27 0.12 I1-0.23 0.04 0.67
0.30 0.27 -0.06 1 ~1.00 —-0.81
U®=[BlVv® = [—0.34 —0.09 0.12 [—4.67 =[0.16]=1.24 0.13]=q6v<6)
-0.16 -0.27 0.12 1l 0.67 1.24 1

0.30 0.27 -0.06][—0.81 0.27 -0.71
UD=[Blv® = [—0.34 —0.09 0.12 ” 0.13 ] [ 0.38 ] =0.38 ! 1 ] =q, V7P
-0.16 -0.27 0.12 0.30 0.79
Similarly check next repeated answer gives us Elgenvalue.



DIFFERENCE OPERATORS

DIFFERENCE EQUATION

Equation involving differences is called Difference Equation.

Solution of differential equation will be sequence of yj values for which the equation is true
for some set of consecutive integer ‘k’.

Order of differential equation is the difference between the largest and smallest argument ‘k’
appearing in it.

DIFFERENCE OF A POLYNOMIAL

The “nth” difference of a polynomial of degree ‘n’ is constant, when the values of the
independent variable are given at equal intervals.

FINITE DIFFERENCES.

Let we have a following linear D. Equation

y'@®)+p()y +qx)y=r(x) ;asx<b

Subject to the boundary conditions y(a)=x and y(b)=f

Then the finite difference method consists of replacing every derivative in above Equation by
finite difference approximations such as the central divided difference approximations

Y (x) ~ 5 [y(x + 1) — y(a; — 1]

Y (x) ~ = [y(x; + 1) — 2y(x) + y(x; — 1)]

Shooting Method is a finite difference method.

FINITE DIFFERENCES OF DIFFERENT ORDERS

Supposing the argument equally spaced so that x;_.; — x;, = h the difference of the 'y’
values are denoted as

Ay, = Yk—1 — Yx And are called First differences.
Second differences are as follows
Ay = AAYL) = AYii1 — DAYk = Yirz — 2YVke1 + Vi

In General: A"y, = A" 1y,.1 — A" 1y, And are called n™ differences



DIFFERENCE TABLE

The standard format for displaying finite differences is called difference table.

DIFFERENCE FORMULAS

Difference formulas for elementary functions somewhat parallel those of calculus. Example
include the following

The differences of a constant function are zero. In symbol "Ac = 0" where ‘c’ denotes a
constant.

For a constant time another function we have A(cu;) = cAuy

The difference of a sum of two functions is the sum of their differences
A(uy + vy) = Auy + Ay,

The ‘linearity property’ generalizes the two previous results.

Alcquy + cavy) = c1Auy + ¢, Avy,

Where c;and ¢, are constants.

PROVE THAT A(cyp) = cAy,

This is analogous to a result of calculus

A(cyr) = €Y1 — €Yk = €(YVis1 — Vi) = cAyy

FOR A CONSTANT FUNCTION ALL DIFFERENCES ARE ZERO, PROVE!

Let Vk ;c = y then forall ‘K’

AYr = Yiks1 — Yx = ¢ — ¢ = 0 Where y;, = cis a constant function.

REMEMBER

The fundamental idea behind finite difference methods is the replace derivatives in the
differential equation by discrete approximations, and evaluate on a grid to develop a system
of equations.



COLLOCATION

Like the finite difference methods, the idea behind the collocation is to reduce the boundary
value problem to a set of solvable algebraic equations.

However, instead of discretizing the differential equation by replacing derivative with finite
differences, the solution is given a functional from whose parameters are fit by the method.

CRITERION OF APPROXIMATION
Some methods are as follows

i.  collocation ii. Osculation iii. Least square

FORWARD DIFFERENCE OPERATOR ‘A’

We define forward difference operatoras Ay; = yi.1— i i=12.n-1
Where y=f(x) (OR) Ayy = Yx+h — ¥x

For first order

Given function y=f(x) and a value of argument ‘x’ as x=a, a+h...... a+nh etc.
Where ‘h’ is the step size (increment) first order Forward Difference Operator is

Af(a) = f(a+ h) — f(a) OR Ayi=y,;1—Yyi Vi=1,23..n—-1

For Second Order

Let A%y, = A(Ayo) = A(y1 — Yo) = Ays — Ayo=(¥2 — ¥1) — (V1 — ¥Yo)
=Y2—2y1+Yo

For Third Order
Ayo = A(A%yo) = A(y2 — 2y1 + ¥o) = Ay, — 28y, + Ay,
=3—Y2)—202—¥Y)+t(1—Y0) =¥3—3y2+3y1— Yo

= Ay,, A%y,, A3y, are called leading differences
In General: A"y, =y, —1Cy,_1 + 5Cyp_y + -+ (=1)"y,

n!

Remark C =

i (n—r)! and GC = 26 =1 and r1lC = n_'iLC =-n



CONSTRUCTION OF FORWARD DIFFERENCE TABLE (Also called Diagonal difference table)

X Y Ay A%y A3y Aty
Xo Yo
- Ay,
=Y1—Yo
X1 Y1 - Az}’o
- Ay, — Ay,
=Y2—")1
X2 Y2 - A%y, - Ay,
- Ay, — Ay,
=Y3— Y2
X3 Y3 — A%y,
Ays
=Y4— Y3
X4 Ya

QUESTION: Construct forward difference Table for the following value of ‘X’ and ‘Y’

X 0.1 0.3
Y 0.003 0.067
SOLUTION
X y Ay
0.1 0.003
- 0.064
0.3 0.067 -
- 0.081
0.5 0.148 -
- 0.100
0.7 0.248 -
- 0.122
0.9 0.370 -
- 0.148
1.1 0.518 -
- 0.179

13 0.697

0.5
0.148

A%y

0.017

0.019

0.022

0.026

0.031

0.7
0.248

Ady

0.002

0.003

0.004

0.005

0.9 1.1 1.3
0.370 0.518 0.697
Aty ASy A%y
0.001
- 0
0.001 - 0
- 0
0.001



QUESTION
Express A%y, and A*y, in terms of the value of function y.

SOLUTION
nH= A%y =Ay,-Ay1= (Y3-¥1) - (V2-Y1) =¥3-2Y2+Y1

uan = Atyo=03y,-Ady,
=A2y,-A?y -(A%y-A%y,)
=Ay3- Ay,-(Ay,-Ay4) -(Ay2-Ay1)+(Ay1-Ayo)
=Y4-4y3+6Yy,-4y1+Yo

QUESTION

Compute the missing values of y,, and Ay,, in the following table.

Yn Yo Y1 Y2 y3=6 Va ys Ye
Ay, Ayo Ay, Ay,=5 Ays Ay, Ays
A%y, A%yo=1 A%y,=4 A%y,=13 A%y,=18 A%y,=24

SOLUTION

A’yp=1 = Ay, —Ay,=1 RSN & §

A%y, = = Ay, — Ay, = 4 SRR ¢/.)

A’y,=13 = Ay;— Ay, =13 i e (3)
A’y;=18 = Ay, —Ay; =18 . .coooivieieiv . (4)
A’y,=24 = Ays— Ay, =24 i e e (5)

(2)=> Ay, —Ay;=4andAy,=5 = 5-Ay;=4 = Ay, =1

1)= Ay, —Ayo=1=1-Ayy=1= Ay,=0

(3)= Ayz3;— Ay, =13 And Ay, =5 = Ay;—5=13= Ay3=18
(4) = Ay, —Ay;=18= Ay, —18 =18 = Ay, = 36

(5) = Ays — Ay,—= 18 = Ays — 36 = 24 = Ays; = 60



Now since we know that

Ayo =Yy1— Yo
Ay1 =Y2— Y1
Ay, =y3—y2

..(6) Ays =ys—Yy3
- (7) Ays = Y5 — Y4
..(8) Ays = Y6 — ¥s

Since By table y; =6 and Ay, =5

(8) =5=6-y, =y, =1

7)) =Ay1=y,-y1=>1=1-y;,=y,=0

6)=Ay0=y1—Y0=>0=0—-y = y0 =0

9) =Ay3=y,—y;3 >18=y,—-6 =y, =24

(10) = Ay, =y5—y4, =36 =y — 24 = y; = 60

(11) = Ays5=y¢—y5s =2 60=y,— 60 = yo=120

QUESTION

..(9)

e e (10)

e (11)

Show that the value of ‘y,’ can be expressed in terms of the leading value’y, ‘and the

Binomial leading differences Ayg, A%yq.....A" Y,

SOLUTION

(1) e oo

Similarly

(2) e oo

Similarly

&)

Ayo=Y1—Y0o OR y; =yo+ Ay
Ayi=y2—Yy1 OR y, =y, +Ay;
Ay, =y3—Yy2 OR y3; =y, +Ay,
and soon.... ... ... ... ...

A%y = A(Ayy) = Ay, — Ayp OR Ay, = Ayg + A%y,
A%y, = A(Ayy) = Ay, —Ay; OR Ay, = Ay; + A%y,
and soon... ... ... ... ...

Ayy = A%y, — A%y, OR  A*Ay, = A%yy + A3y,
Ay, = A’y, — A%y, OR A%y, = Ay, + Ay,
and soon... ... ... ... ...



Also from (2) and (3) we can write Ay, as
Ay, = (Ayg + A%yg) + (A%y + A3yg) = Ay + 2A0%y0 + Adyg . e oo o (4)

From (1) and (4) we can write y3 as
Y3 =¥z +Ays = (y1 + Ay1) + (Ayy + A%yq)
= (Yo + Ayo) + 2(Ay, + A%yo) + (A%yo + A%yo)
= Yo + 34yo + 30%y, + A3y, = (1 + A)%y,
Similarly, we can symbolically write
y1 =1 +28)yy y2 = (1+4)%yg, y3 = (1+A4)>ygIngeneraly, = (1+24)"y,

Hence Yn= Yo+ c{ Ayo+ 3 A% yg+ ————— + cp A"y, = i, C} Ay,

BACKWARD DIFFERENCE OPERATOR "V"
We Define Backward Difference Operator as
VVn=Yn— Yn-1 VN=12,.. . i (OR) Vf(x) =f(x)—f(x—h)

(OR) Vyx =Yx — Yx-n

BACKWARD DIFFERENCE TABLE
X Y Vy Viy Viy
X0 Yo

—  Vyi1=y1—Yo

X1 Y1 — Viy,
— Vy;=y,—»n — Viy;
X2 y2 — VZy;3

— Vy;=y3— 1y,



QUESTION

Show that any value of ‘y’ can be expressed in terms of 'y,," and its backward differences.

SOLUTION

Since Y, 1=¥Yn—Vy, And Y, 2=Vu1— V¥Vn_1 (1)
Also Vy, 1 =Vy,— V2y, e (2)

Thus VYn1=Yn-1— Yn-2 (Rearranging Above)

(1) = Yn-2 = Yn-1— VW +2%yn = yn — Vyn — Vy, + Viy,

Yn-z  =Y¥n—2Vyn+ A%y, = (1-2V+V¥)y,
Similarly We Can Show That Yno3 = Yn— 3Vy, +3V?y, — V3y,
Symbolically above results can be written as
Yn-1= (1 =V)yy,Yn2= (1=V)2yp ...
In General Vnr= (1-=-V)"

ie. Ypr= Yn— 1CVy, +5CV3y, — ... + (—1)"Vy,

SHIFT OPERATOR “E”

Shift Operator defined as for  y=f(x)

E"yi=yin Vi=12, .. .. ,nm=1273,....

OR E"f(x) = f(x+nh)  OR E"yy = Yxinn
"8” CENTRAL DIFFERENT OPERATOR

Central Different Operator for y=f(x) defined as

oy; = yi% — yi_% Vi=1,2,...n

(OR) §f()=f(x+3)—f(x—3) (OR) OYx =Y, 1=V,



TABLE

X Y Y 8%Y
Xo Yo
— 6y% =Y1—Yo
X1 Y1 - 8%y,
— 6_‘y§ —
2
X2 Y2 - 8%y,
— 8}15
2
X3 Y3

AVERAGE OPERATOR “u"

For y=f(x) Differential Operator defined as

1 ,
ny; = 2 [yH_% + yi—%] vVi=12,...... n

]

X3

OR)  pf@)=3If (x+3)+f(x=3)]  (OR) wyr=3[y, n+y

DIFFERENTIAL OPERATOR “D”
For y=f(x) Differential Operator defined as D"f(x) = ;—; f(x) vn

SOME USEFUL RELATIONS
From the Definition of “A" and “E” we have

AYy =Yxth—Vx =Eyy—y,=(E-1y, = A=E-1
Now by definitions of V and E~! we have

_ _ _ E-1
VY=Y —Yrn=Y«—E'y,=A-EVy, = V=1-El=—

The definition of Operators ‘6’and ‘E’ gives

h 1 -1 1 -1 1 s
OYx=Y b = Va-g = E2yx—Ezyy = (B2 =Ez)y, = 6=E—E>

53y

63}13



The definition of ‘u’ and ‘E’ Yields

1 -1

1 - 1
[E2+Ezly, = p=;(Ez+E2)

N | =

1
ny, = Z_[y h +yx—%] =

X+E
Now Relation between ‘D’ and ‘E’ is as follows

Since Eyy = Yyn = f(x + h)

Using Taylor series expansion, we have

h%
Ey,= f(x)+hf (x)+ 21 )+

hZ
Ey,=f(x)+ hD f(x) + 57 D? f(x)+ - ...

hD  h%D?
Eye=[1+ 5 + — + o] )
Ey, = e 'ez—1+z+f+£+~-
Yy = Yy - = TR TR
Taking ‘Log’ on both sides we get LogE = hD

Hence, all the operators are expressed in terms of ‘E’

1
PROVE THAT EV = A= 6E2
EV=E(1-E™) ~V=1-E1

=E-EE'=E-1 = A

1 _ —
And S8E/2 = (EZ — E ) E2 = §=E" —E '

=E-1= A

PROVETHAT & =2sinh (%)

Since & = (El/Z — E_l/Z) ~ logE = hD = E = e"?

1 -1 hD —hD
E/2 —E /2 ez —e 2 , hD
() () sy



PROVETHAT p = 2cosh ()

_ hD —hD
Since p=[E/2 + E /2] = J[ez + ez ]|=cosh()

Show that 6,u,E,A,V Commute

SEf(x)= 6f(x+h)=f(x+h+h)—f(x+h—h) = f(x+2h) - f(x)
Eéf(x) =E[f(x+h) —fx-Rm)]=Ef(x+h) - Ef(x—h)
=f(x+h+h)—f(x—h+x) =f(x+2h) - f(x)
= SEf(x) = ESf(x)  Commute

Now
Av(yx) = A(yx - Yx—h) =AYy — AYx_n

= (Yx+h _yx) - (yx—h+h - yx—h) = Yx+h = Yx — Yx — Yx-h
= Yx+h — 2Yx + Vx-n

And VAW, =V(YVxsh = Yx) = VVeinh —V¥x = OVxsh = Yxih-t) — Vx — Yx-n)

= Yeth —Yx —Yx T Yx-h = Yx+h — 2Yx + Yx_n = AV(yx) = VA(yx) Commute
hD =log(1+A) = —log(1 —V) = sinh™! (ué)

Since hD =logE =1log(1+A) vE=1+A

=—logE'=-log(1-"V)
Also  pé= %(El/Z + E‘I/Z) (El/z - E‘I/Z) = J(E—E™)
— %(ehD _ e—hD) wE=eh? E1—¢hD

ué = sinh(hD) = hD = sinh™' (ué)



62
PROVE THAT 1+ &8%u*>=_1+ 7)2

, 11 _1 1 1\ 1 1
since ps=3(E/2+E"2)(E/2—E2) = Z(E-E™Y)
u*8% = %(E —E1)?  Squqring both sides

282 =2 (E2 + E% - 2)

1+ u%6? = —(E2 +E2-2)+1 - Adding ‘1' on both sides
2¢c2 _ E*+E"2-2+4 _ E*+E%+2 _ (E+E™1)?
1+p76" = 4 - 4 T4
E+E-1\2 ,
1+ p28? ( : ) RN ¢ )

1 -1
Also 6= (Ez—E2)
1
8% = (Ez2— E2)? - Squaring Both sides.

2 1 -1
67 = %(EE — E7)? - deviding 2 on Both sides

8% E+E1-
1+ 5 =

251 - Adding 1 on Both sides

2 -1_
1+%_w Z(E+E™) e (D)

Combining (i) and (ii) we get the result.

1

PROVE THAT Ez=p+°

EZ+EZ -1 1 -1

)+1E - E7) =

N | =

since u+g=(

1

1
[E2 + E7 + E2 — E? = (2E2) =



2 52

PROVE THAT A= g +8. 1+

1 -1 1 -1
since6=Ez—Ez = §%>=(Ez—Ez )? + Squaring
82 1,1 -t . b .

5 =5 (Ez2—Ez)? = deviding by (2) ................ (i)

&2 1 1 -1 52 1 1 -1 . )
Also Izz(EZ—EZ)Z =>1+T=1+Z(E2_E2 )2 . adding one on side

2 —1_9\2
/1 + % = f(%) ~ taking squre root on both sides
2 1/2 1/2
[1+S = (B2 1+2 = E2+E2
-1 1 -1
—s () <E2 )
Now 6. 1+T= 6 = = TN ¢ 1))

2 2 2

Adding (i) and (ii) we get

1 -1
&2 52 E2-E 2 )2 E-E1 E+E~1-2+E-E~1 2E-2 2(E-1)
Zie 142 (BE) ===

2 4 2 2 2 2 2

=E—-1=A forwarddifference operator

PROVE THAT —2=1
0
1+T
1 1, 2 1\ 2
52172 a2 |[4+(E7> +<E‘7> —2]I
= 82=|.1I1+I =n|l+ 2 =p.[ 2 J
1+T
1
1 1\ 2] 2
E2+E2 B
=un =nu =1



-1
PROVETHAT ps="—+%

1, 1L 1t 1 1 1
pé=-(Ez+E7)(E2—Ez) =_(E—-E™")

Now since A=E—1 thereforeE=1+A

1A 1 gy _ A 1(E-1\ A A
[1+A-E ]_2+2(1 E )_2+2(E)_2+2E

N | =

ué =

AE™1 A
== +E ~E—1=A

A+V

PROVE THAT uo = —

po = %(E% + E%) (E% - E%) ~1E-EY

Since A=E — 1 and |7=1—E—1:%
A+V

therefore ua=%(1+A—1+|7)=T

Show that operators “nu’ and “E” commute

« -

From the definition of “u” and “E”
1
HEyo = py1 =3 (2 +y1)
While Epyo,=puy, = %E(}’z + y—_1> = %(3’2 + }’1) = uE =Ep
2 2 2 2

= “u’ and “E” commute



INTERPOLATION

For a given table of values(x;, y,) VK =0,1,2, ....... n. the process of estimating the values
of “y=f(x)” for any intermediate values of “x = g(x)” is called “interpolation”.

If g(x) is a Polynomial, Then the process is called “Polynomial” Interpolation.
ERROR OF APPROXIMATION

The deviation of g(x) from f(x) i.e. |f(x) — g (x)]| is called Error of Approximation.

EXTRAPOLATION

The method of computing the values of ‘y’ for a given value of ‘X’ lying outside the table of
values of ‘X’ is called Extrapolation.

REMARK

A function is said to interpolate a set of data points if it passes through those points.

INVERSE INTERPOLATION

Suppose fe C [a,b], f'(x) # oon [a, b]and f has non- zero ‘p’ in [a, b]

Let “xg, X1 ... ... ... Xy, be ‘n+1’ distinct numbers in [a, b] with f (x;) = y, for each
k=012 ..n

To approximate ‘p’ construct the interpolating polynomial of degree ‘n’ on the nodes

”yO, V1 ........... yn" fOr uf_l »
Since “y,=f (xi)” and f (p) =0, it follows that f~* (y\) = X, and p = £~ (0).

“Using iterated interpolation to approximate f~1(0) is called iterated Inverse interpolation”

LINEAR INTERPOLATION FORMULA
fx) =p1(x) = fo+p(f1— fo) = fo + PASfo

X—X0

o 0<P<1

Wherex =xog+ph =p=

QUADRATIC INTERPOLATION FORMULA

F(0) = p2(x) = fo + pAfo + 2 A%,

Where x = xo + ph =>p=ﬂ

o 0<P<2



ERRORS IN POLYNOMIAL INTERPOLATION

Given a function f(x) and a < x < b, a set of distinct points x; i = 1,2, .......n and x;€ [a, b]
Let P,(x) be a polynomial of degree < n that interpolates f(x) at x;
i.e. P,(x)=f(x;) ;i=1273,........n

Then Error defineas " € (x) = f(x) - P,(x)"

REMARK
Sometime when a function is given as a data of some experiments in the form of tabular
values corresponding to the values of independent variable ‘X’ then
1. Either we interpolate the data and obtain the function “f(x)” as a polynomial in ‘x’ and
then differentiate according to the usual calculus formulas.
2. Or we use Numerical Differentiation which is easier to perform in case of Tabular form
of the data.

DISADVANTAGES OF POLYNOMIAL INTERPOLATION
e n-time differentiable ¢ No convergence result
e big error in certain intervals e Heavy to compute for large “n”
(especially near the ends)

EXISTENCE AND UNIQUENESS THEOREM FOR POLYNOMIAL INTERPOLATION

Given (x;,y;)i~, with Xi’s distinct there exists one and only one Polynomial P,(x) of degree
<nsuchthatP,(x;)=y; ;i=12,........n

PROOF

Existence Ok from construction.

For Uniqueness:

Assume we have two polynomials P(x), q(x) of degree < n both interpolate the datai.e.

px)=yi=qx) ;i=1,2,.........n
Now let g(x) = P(x) — q(x) which will be a polynomial of degree < n
Furthermore, we have gx)=px)—qx))=y;—y;i=0 ;i=0,1,2,.........n

So g(x) has ‘n+1’ Zeros. We must have g(x)= 0. Therefor p(x)= g(x).

REMEMBER: Using Newton’s Forward difference interpolation formula we find the n-degree
polynomial 'P,,” which approximate the function f(x) in such a way that ‘P, and ‘ f ’ agrees
at ‘n+1’ equally Spaced ‘X’ Values. So that

Pn(xo) = fo,Pn(xl) S e he re e ...,Pn(xn) = fn

Where fo = f(x0), f1=f(X1) eov oo fn = f(x,) Arethevalues of ‘f’in table.



NEWTON FORWARD DIFFERENCE INTERPOLATION FORMULA
Newton’s Forward Difference Interpolation formula is

f(x) = Py(x)

= f(x) + PAf(xo) _I_P(P 1)A2f(x0) e +P(P 1)-- (P n+1) A" £ (x0)
Where x = xo + ph, P =
DERIVATION:
Let y:f(X), x0=f(x0) And xn:x0+nh :}x:x0+ph
f(x) = f(xo + ph) = EPf(xo) = (1 + A)Pf(xo) ~E=1+A
=[1+ PA +P(P 1 i _I_P(P 1)- (P n+1)]f( o)

P(P- 1) P-n+1)

f(x) = f(x0) + PAf(xo) + - + f(x0)

CONDITION FOR THIS METHOD

e Values of ‘x’ must have equal distance i.e. equally spaced.

e Value on which we find the function check either it is near to start or end.
e If near to start, then use forward method.

e |f near to end, then use backward method.



QUESTION

Evaluate f(15) given the following table of values

X : 10 20 30 40 50
f(x) : 46 66 81 93 101
SOLUTION

Here ‘15’ nearest to starting point we use Newtown’s Forward Difference Interpolation.

X Y AY A2Y A3Y A%Y
10 46
20
20 66 -5
15 2
30 81 -3 3
12 -1
40 923 -4
8
50 101
F(x) = yo+PAy, + P(P-1) Azyo n P(P-1)(P-2) A3y0 n P(P-1)(p-2)(p-3) A4y0

2! 3! 4!

wx=xp+ph=15=10+P(10) = P = 0.5

(0.5)(0.5-1)

(0.5)(0.5-1)(0.5-2)
2! (

f(15) =46 + (0.5)(20) + 3!

+ (0.5)(0.5—1)(;){.5—2)(0.5—3) (_3)

(=5 +

2)

= f(15) = 56.8672
NEWTONS’S BACKWARD DIFFERENCE INTERPOLATION FORMULA

Newton’s Backward Difference Interpolation formula is

Yx = fx) = Py (x)

P(P+1)
2!

sz(xn) Foes n P(P+1)(P+2)---- (P+n-1) an(xn)

n!

= f(xn) + PVf(x,) +

x"hx"; —n<P<0

Where x = x,, + ph, p =



DERIVATION:
fGta+Ph) = EPf(x,) = (ETD T f(xn) =1 -V)Ff(xy)

Using binomial expansion f(x) = [1 + PV +——

f(x) = f(xn) + PVf(xy) + ——

Lety = f(x), x,

P(P+1)

V2f(x,) +

P(P+1)

——VZ4

= f(x,) and x = x, + Ph

Then

P(P+1)(P+2)

This is required Newton’s Gregory Backward Difference Interpolation formula.

.'.E_lzl—v

V3t | fla)

QUESTION: For the following table of values estimate f(7.5)

X 1 2 3 4 5 6 7 8
f(x) 1 8 27 64 125 216 343 512
SOLUTION

Since ‘7.5’ is nearest to End of table, So We use Newton’s Backward Interpolation.

X
1

Since P =

Now

y =512+ (—-0.5)(169) +

X—Xp

2!

Y VY \%a'

1
7

8 12
19

27 18
37

64 24
61

125 30
91

216 36
127

243 42
169

512

y =y, + PVy, + P(l;-!kl) ZJ’n n P(P+13)!(P+2)
(-0.5)(-0.5+1) (42) +

vy

n

A%

(-0.5)(-0.5+1)(-0.5+2) (

y =512 —84.5—5.26 — 0.375 = f(x) = 421.875

3!

VY




LAGRANGE’S INTERPOLATION FORMULA

For points xy, X1 ... ... ... ... X,, define the cardinal Function
lo,l4 ... ... ... ... 1, € P" (polynomial of n-degree)

1 i .
l,-(x]-)z{o ;é i=o0,1,2, ....n

The Lagrange form of interpolation Polynomialis p,(x)=Y1o i (X)y;

DERIVATION OF FORMULA

Let y=f (x) be a function which takes the values y,y;y; ......... ¥, so we will obtain an
n-degree polynomial f(x) = apx™+a;x" ... +a,
(Y =f(x) =ag(x —x)(x —xz) - (x — xp)
+ag(x — x0) (X — xz) - (x — xp)
Now (i) ..........J Taz(xr—xo)(x— xl):(x — x3) e (X — %)
U Fap (e —x)(x —xq) o (x —x5-1)
Now we find the constants ag, aq, - a,
Put x= xq in (i)
(¥ = f(x) = ap(xp — x1)(xg — x2) -+ -~ (X0 — xn)
+ay(xg — x0)(Xg — x2) -+ -+ (X0—2xy)
()= A +az(xo — xo)(xo—xﬂ(.xo —Xx3) (xg — xn)
\ +a,(xg—x9) (X9 — Xx1) =+ -+ (X0 — Xn-1)
= Yo = ao(xo — x1)(xy — X3) e o (xo — x3)
i ap =y1 + [(xo — x)(xg — x2) -+ (%0 — x1)]
Now Putx=xqin
y1=f(x1) = ay(x1 — x,)(xg — x2) = - (x1 — x5)

= a; =y + [(xp — x0) (x5, — x2) o+ o (X — Xp-1)]



Similarly

Ap =Yn ~ [(xn - xO)(xn - xl) """ (xn, — xn—l)]
Putting all the values in (i) we get

(x—x1)(x=x2) e (x—x3) (x—x0)(x=x2) . (x—2x3)
x0—x1) (X0—x2) ... (X0—xn) L (e1—x0) (X1 =X2) e (X1 =2
(x—x0)(x—x1) ... (X—Xp_1)

n (xn—x0) (Xn—21) rreen (Xn—xn-1)

y=f(x)= yo:
Lty

=y=fx)=1lyo+ Ly + Ly, +- + LaYn = Zk=o0 LYk

_ (x=x0)(x—x1) ... (x=xp—1) (X=X 1) e eeee (x—x5)
Where lk(x) - (xp—x0) (XE=%1) ererenn (X=X p—1) (X=X 1) eveee (xXp—xn)
ALTERNATIVELY DEFINE
(x) = (x — x9) (X — X1) ovvue (x—x,)

Then T'(xX)=1-0)[(x—x)(x—2x3).....(x — x,,)]
+A-0)[(x—xp)(x —22)(x —x3) e .. (X = X)] v e et e e e
+(@A = 0)[(x — x0) (x — 1) (x — x2) ... (x — Xp_1)]

' (xp) = (X — X0) (X — X1) e oo (X — Xp—1) (X — Xpy1) e (X — x5)

l (x) _ (x—xp) (x=x0)(X=X1) wererenn (x—xp—1)(X=Xp 1) e (X—27)
k (x—xk) ) (xk—xo)(xk—xl) ......... (xk—xk_l)(x—xk+1) ........ (xk—xn)

Then I,(x) = ()

(x—x)7’ (x)
CONVERGENCE CRITERIA

Assume a triangular array of interpolation nodes x; = x;™ exactly ‘n + 1’ distinct nodes for
‘m=0,1,2.......7

N0

WO

XD D @

X X x(



)

Further assume that all nodes x; ' are contained in finite interval [a, b] then for each ‘n’ we

define

P,(x) = Pn(f; xf,"),x(l"),,,,,,,x;")), xela, b]

Then we say method “converges” if P,, (x) — f(x) as n — oo uniformly for x € [a, b]
(OR)

Lagrange’s interpolation converges uniformly on [a, b] for on arbitrary triangular ret if nodes

. .. . . b . . -
of ‘f" is analytic in the circular disk ‘C,.” centered at % and having radius ‘r’ sufficiently

large. So that r > %(b — a) holds.

G

x

|Q
N+
[

PROVETHAT [ f(x)dx = ”2;“ [f(a) + F(b)]

PROOF: Using Lagrange’s formula forn = 1 fX)=Yhoo Lk Of(xy) k=01

f(x) = Lo(x)f(x0) + L1 () f(x1)

Integrating over [a, bl whenx, =a, x; =b

b b b
f FOO dx = f 1, (O f (xo) dox + f L (0 f (xy)dx

[y FOO dx = f(xo) [ Lo (O dx + f(xo) [ L (x)dx

X—X X=X
Now Io(x) = xo_xll l,(x) = xl—;o

:;—x11 dx + f(xq) [ ’;1 X0 dx

xX9—X X0 x1—Xg

X

[DF) dx = flxo) [




Let x=x9o+ph =>dx=hdp as x—->x, themn p—-0 also x— x;then p—1

fbf(x) dx = I1thp Flxo) + f(xq) fl xo+ph—x0 hdp
[} @) dx = [} “2L hap. f(xo) + f(xy) f, 2222 hap

1la- b+ph

xo+ph X0

1ph. hdp

f(x) = f(xo) J, hdp + f(x1) [,

“Xg=aq4 X1=b
1 h+vh 1 1 1
fx) = fxo) f —P2ap+ fx) [ phdp = —hfGx) [ - Ddp+ fxk [ pp
0 0 0 0

2,1 21
fx) = —hf (xo) [|%|0 - |p|5] +hf ) [

1 1 h h
£ = ~hf (o) (5 = 1) + 1fGen) (5) = = 5 FGx0) + hf Gxo) + 5 FGx)

F(0) =2f(x0) + 2 (1) = 2[f (o) + F(x)] = =2 [f (@) + f(B)]
Sinceh=b%a=b—a forn=1 xo=a and x;=Db

Hence the result

PROS AND CONS OF LAGRANGE’S POLYNOMIAL

e Elegant formula (+)

e Slow to compute, each [;(x) is different (—)

¢ Not flexible; if one change a point x;, or add an additional point x,.; one must
re-compute all [;,;(—)

INVERSE LAGRANGIAN INTERPOLATION

Interchanging ‘x’ and ‘y’ in Lagrange’s interpolation formula we obtain the inverse given by

n k®

x~1(y) = =0y, (yx)



QUESTION

Find langrage’s Interpolation polynomial fitting The points y(1) = —3,

y(3)= 0,y(4) =30,y(6) =132, Hence find y(5) =?

X: Xo=1 x1=3 X,=4 X3=6
Y: -3 0 30 132
ANSWER

Since y(x) = Ly, + L1y + Ly, +13y;

(x—x1)(x—x2) (x—x3) . (x—x0)(x—x3)(x—x3) , (e=xp)(x—x1) (x—x3)

y(x) =
(x=x0) (x—x1)(x—x2)
(x3—x0) (x3—x1) (x3—%2) 7 3

By putting values, we get

y(x)
_ (x=3)(x-4)(x-6)
T (1-3)(1-4)(1-6)

(x-1)(x—4)(x—6)
(3-1)(3-4)(3-6)

(x-1)(x—3)(x—6)

(=3)+ (4-1)(4-3)(4—6)

(0) +

[—x3 + 27x% — 92x + 60]

N | =

y(x) =
Put x =5toget y(5)

y(5) =5[-5% +27(5%) — 92(5) + 60] = Y (5)=75
DIVIDED DIFFRENCE

Assume that for a given value of (x1,y1)(x2¥2) ... (n, ¥n)

y[xol = y(x0) = yo = yat x,

Then the first order divided Difference is defined as

(30) +

_ J1-Yo — Y2-)1 _
ylxo, x1] = P ,¥[x1, x5] |
The 2™ Order Differenceis  y[xox, x;| = %_:[x"xl] = a,
2,40
Similarly — y[xg x4 X3 v 2| =2 [roxpxs ]yl e o tnaal

Xn—Xo

(x0—x1)(Xo—x2) (x0—x3) 7 " (x1-%6) (x1-%2) (x1—x3)” 1 (x3—x0) (xz—x1)(x2—%x3)” 2

(x-1)(x—3)(x—4)

(6-1)(6—-3)(6—4)

(132)



DIVIDED DIFFERENCE IS SYMMETRIC

}’[xo,x1] —Y17Yo _ —Oo—y1) _ }’[x1,x0]

x1—xp  —(x0—x1)

© Also Newton Divided Difference is Symmetric

NEWTON'’S DIVIDED DIFFRENCE INTERPOLATION FORMULA

If xo X1 ... X, are arbitrarily Spaced (unequal spaced) Then the polynomial of degree ‘n’
through (x,, fo)(x1, f1) ... .... (Xn, fn) where f; = f(x;) is given by the newton’s Devided
difference Interpolation formula (Also known as Newton’s General Interpolation formula)
given by.

f(x) = (fo) + (x — x0) f[x0,21] + (x — x0) (x — 20 f[x0,%1, %2 ] + -+ v s v e

et (X = 2x0) (X — x1) o (X — Xp_1) f[ X0, 21 -ov . %]

DERIVATION OF FORMULA

Let y=f(x) = ag + ay(x — x0) + az(x — x0) (X = X1) + -+ v eee e
v e 0y (X = 20) (X — X0) (X — X3) .. (X — Xpp_1) SR ()

Putx=x9g=>y1=f(xg) =ag+a;(xg—x9) +0+0..+0 = ay =y, = y[x,]
Putx=x; = y;=f(x1)=ap+a;(x;1—x9)+0+0..4+0
_ Y1~ Yo ylx1]l-ylxol

y1—Qo
= = Xo, X = = S Ay =
X1-7%o ylxo, x1] X1-%o P 0o=DYo

=}a1

Put x = x, Vo =f(xy) =ag+a;(x; —xp) +ay(xy —x9)(Xx3 —x1) +0+0..4+0

=y, — ap — a;(xz — x9) = az(xz — x0)(x2 — x1)

Y2 — Yo — (%) (x3 — x9) = az(xy; —x9)(x, —x1) -~ using above values
140
> q, = y2=yo—(x2— x0)ylxo, x1] _ (y2=y1+y1-yo) = (x2—x0)ylxo, x1]
2 (x2—x0)(x2—x1) (x2— x0)(x2— x1)
ay = (yz—y1)+3;11:i’3(xl—xo)—(xz—xo)y[xo,xﬂ _ (y2—-y1)+ylxo , x1]1(x1—x0)—(x2—x0)y[x0,%1]

(x2—x0)(x2—x1) (x2—x0)(x2—x1)

_ O2—yD+ylxo, xal{xa—xo—x2+x0} _ (z—yv)+ylxe, x1](x1—-x2)
(x2—x0)(x2—x1) (x2—x0)(x2—x1)

a;



y2—y1, ¥[xo . x1](x1-x32) Yxo, x4,
a, = xp-x1 x3—%1 — yixixzl (x1-x2) (x1-x2) _ Ylxa—xa2]-ylxo, x1] _ y[xo, X1, %3]
2 (x2—x9) (x2—x9) (x2—x9) 012
Similarly a; = y[xg, X1, X2, X3] v cev e e e e @y = Y[ X0, X1, X3 ... Q]

(D) = ¥y = ylxol + (x — x0)y[xo, x1]+.. +(x = x0) (x = X1).. (X = Xy_1) ¥ [Xo, X1.. Xn]

TABLE
X Y 1 Order 2" Order 3" Order
X0 Yo
- y[xorxl]
X1 Y1 - Y[xo, X1, X2]
- ylxq, x;3] - Y[xo, X1, X2, X3]
X2 Y2 - ylxq, x2, x3]
- y[xz,x3]
X3 y3 :
xn yn
EXAMPLE:
X Y Y[xl)l xl] Y[xo'xler] Y[xorlex27x3]
2 25
40 — 25 B
5—-2
5 40 10-5 4
7-2
10 0-1 _ 1
10-2 8
7 60 10-10 —0
10-5
10
10 90

A RELATIONSHIP BETWEEN n"" DIVIDED DIFFERENCE AND THE n"" DARIVATIVE

Suppose “f” is n-time continuously differentiable and x, x4 ... x,, are (n + 1) distinct numbers

in [a, b] then there exist a number "§" in (a, b) such that  f[xg, x1 ... X, ] = %



THEOREM

nth differences of a polynomial of degree ‘n’ are constant.

PROOF Let us consider a polynomial of degree ‘n’ in the form

Ye=a,x"+ax* 1+ +a, 1x+a,

Then yp=ap(x+h)*"+a;(x+ )" 1+ +a, ;(x+n)+a,

We now examine the difference of polynomial Ay, =y,..p — V.,

Ay, = ap[(x + )® — x| + a4 [(x + A" 1 —x™ 1]+ L +a,_1[x + h—x]
Binomial expansion yields

Ay, = ag(x™+"Cy x" L h+"C, x" 2 h? + --- + h™ — x™)

+a,;(x" 1+ C P h+ 20 x" 3 hE 4+ -+ AV —xY) + -+ a,_1 h

Ay, = agnhx™ ! + [ag3Ch? + a;" 1Ch|x™ 2 + ... +ay_1 h

Therefore Ay, = agnhx™ ! +b'x" 2 +c'x* 3+ -+ k'x+1

Where b’,c’, k', I’ are constants involving ‘h’ but not ‘%’

Thus the first difference of a polynomial of degree ‘n’ is another polynomial of degree(n — 1)
Similarly A%y, = A(Ay,) = AYxin — Ay,

=aonh[(x+ )" —x"1+b'[(x+h)"%2— x" 2]+ ... +k'(x + h — x)
Ay, =agn(n—1h*x" 2 +b" x" 2 +C"x"*+--+q"
Therefore A2y, is a polynomial of degree (n. — 2) in ‘x’

Similarly, we can find the higher order differences and every time we observe that the degree
of polynomial is reduced by one.

After differencing n-time we get
A"y, =ay(n—1)(n—2).. (2)(1)h™ = ag(n!)h™ = constant.
This constant is independent of ‘X’ since A™y, is constant , A"y =0

Hence The (n + 1)th and higher order differences of a polynomial of degree ‘n’ are zero.



NEWTION’S DIVIDED DIFERENCE FORMULA WITH ERROR TERM

y(x) = yo + (x — x0)y[x,x0] v vr e e (D)
y[x, xo] = ¥[x0, x1] + (x — x)¥[%, X0, X1] v v e ee . (WD)
yIx, x5, x1] = Y[x0, %1, X2] + (X — x2)Y[x, X0, X1, X2] v eee en e (HHD)
yIx, x5, %1, X2] = Y[x, x4, X1, X2, X3] + (x — X3)Y[X, X0, X1, X2, X3] vt eev ver v (iV)
Y[X, Xg, X1 . Xp—1] = V[X0, X1 o X ] + (X, X)) V[X, X0, X1 0. Xp] e v (M)

Multiplying (ii) by (x — o) (i) (X — xg) (X — X1) w.. .. (1) By (X — %) (X — X1) v vo. (Xn1)
And adding all Equation’s

y(x) = yo + (x — x0)¥[x0, x1] + (x — x0) (x — x1)y[x0, X1]

bt (2= 20) (X = X1) s (X — %) Y[, X1, Xz o 2]

Also last term will be € (x)

LIMITATIONS OF NEWTON’S INTERPOLATION.

This formula used only when the values of independent variable ‘x’ are equally spaced. Also

the differences of ‘y’ must ultimately become small. Its accuracy same as Lagrange’s Formula
but has the advantage of being computationally economical in the sense that it involves less
numbers of Arithmetic Operations.



ERROR TERM IN INTERPOLATION

As we know that

y(x) =y + (x —x0)y[x0, x1] + e ve s e F (x —x9) (x — x9).. (x — X0—1) V[X0, X1 ...

Approximated by polynomial P,,(x) of degree ‘n’ the error term is

€E(x)=ykx) - P,(x) R € )
EM)=(x—x0)(X = X1) e v v e . (X — X)) Y[X, X0, X1 e X
Let EM) = X) Y[x, X0, X1 - Xl = KT (X) oo e et e e e (ED)

And F(x) =y(x) — P,(x) — km(x)
F(x) Vanish for x,,x;..x, Choose arbitrarily X from them.

Consider an interval ‘I’ which span the points X, x(, X1 ... X,. Total number of points
(n + 2) Then F(x) vanish (n + 2) time by Roll’s theorem

F'(x) Vanish (n + 1) time, F"(x) vanish n-time. Hence F**1(x) vanish 1-time choose
arbitrarily x = §

dn+1

= F(8) = y™i(§) - PR(S) — ke m(8)

5 0=y"§ - 0—kn™(§) ~y™§) =0 and P™I(S =0

n+1(§)
> ymIE) = knv (S = k=2 s
. n+1(§)
if mY(x)=m+1)! =k= y(n+—1), = k = y[xo,x1 ... Xu]

Xn]



NEWTON'’S DIVIDED DIFFERENCE AND LAGRANGE’S INTERPOLATION FORMULA

ARE IDENTICAL, PROVE!

Consider y = f(x) is given at the sample points xg, X1, X,

Since by Newton’s divided difference interpolation for x,, x4, x, is given as

Yy =¥+ (x — x0)y[x0, x1] + (x — x0) (x — x1)y[x0, X1, X2]

y =0+ (x—x) (B2) + (x - x)(x — x ) Lrxeybon) sz] —

y = Yo+ (= x) (B2  (S20) (on_ nio)

Y = Yo+ (8= xg) (B2) (SR (2, f L}y )

Y = Yo+ (8= xg) (B2 (S (e, Ot (i) | )

Y = Yo+ (8= xg) (B2)  (SEEI) (2, flm }, Jo )
Y=o+ (= x0) (B00) + (o — o e e )
y=yo+ (=) (B2) + (B s — T s B )
y=yo[1- (F22) + o] 31 [(2) — o] + vz [

Y=Y

y=J’0[

[(x1 x0)(x2—

(x—x1)(x—x3)
(xo—x1)(x0—x2)

(x—x9) (x—x3)

(x1—x0)(x1—x2)

x9)—(x—x¢)+(x— xo)(x—xl)] n
(x2—x0)(x1—x0)

+1] |+

(x=x0) (xz—x1)—(x—x0) (x—x1)

(x2—-x1)(x1—x0)

(x—x0)(x—x1)

2 [(xa—x0)(x2—x1)

This is Lagrange’s form of interpolation polynomial.

Hence both Divided Difference and Lagrange’s are identical.

_(x=x0)(x—x1)
(x2—x0)(x2—x1)



SPLINE
A function ‘S’ is called a spline of degree ‘K’ if it satisfied the following conditions.

(i) S is defined in the interval [a, b]

(ii) S"is continuouson [a,b] ;0<r<k-1

(iii)  Sis polynomial of degree less than equals to 'k’ on each subinterval
[x;, x;41];1=1,2,...,n—1

CUBIC SPLINE INTERPOLATION
A function S(x) denoted by S;(x) over the interval [x;, x;,41];j=0,1,2,..,n — 1

Is called a cubic spline interpolant if following conditions hold.

o Si(x;)=f; ;J=0,1,2, ...

o Sit1(xj41) = fj1 j=0,1,2,...m—2
o Sii'(Xjs1) = fiaa j=0,1,2,...m—2
o Sii(xjr1) = fiia j=0,1,2, ..t — 2

& A spline of degree “3” is cubic spline.

NATURAL SPLINE
A cubic spline satisfying these two additional conditions

S{@x)=0 and  S§,(x) =0



HERMIT INTERPOLATION

In Hermit interpolation we use the expansion involving not only the function values but also
its first derivative.

Hermit Interpolation formula is given as follows
P(x) = X o[1 — 2L;(x;) (x — x)] [Li(x)]?y: + (x — x) [Ly(x)]*y)
EXAMPLE

Estimate the value of y(1. 05) using hermit interpolation formula from the following data

X Y Y’
1.00 1.00000 0.5000
1.10 1.04881 0.47673

Solution:
. xX—Xx 1.05-1.10
At first we compute [ ,(x) = —2L = =0.5
xo-x1  1.00-1.10
1 1 1
l’ X) = = = — —
0o(x) xo—x1  1.00-1.10 0.10
xX—X 1.05-1.00
And L, (x) = 2 = =0.5
x1-x9  1.10-1.00
1 1

1
! et ] = —
1(x) = x1-x9  110-1.00 0.1

Now putting the values in Hermit Formula

P(x) = ¥ o[1 — 2L;(x) (x — x)] [Li(x)1%y; + (x — x)[Li(x)%y

We find

y(1.05) =
[1 ~2 (— ﬁ) (0. 05)] (%)Z (1) + (0.05) (%)2 (0.5) +

[1 ~2 (ﬁ) (—0. 05)] G)Z (1.04881) + (—0.05) (%)2 (0.47673)

y(1.05) = 1.0247 required answer



NUMARICAL DIFFERENTIATION

The problem of numerical differentiation is the determination of approximate values the
derivatives of a function ‘f’ at a given point.

DIFFERENTIATION USING DIFFERENCE OPERATORS

We assume that the function y = f(x) is given for the equally spaced ‘x’ values x,, = xo + nh
forn=20,1,2,...... ... to find the darivatives of such a tabular function, we proceed as
follows;

USING FORWARD DIFFERENCE OPERATOR 'A’

Since hD = log E = log(1+ A) ~E=(1+A4)

=>D= %[log(l + A)] Where D is differential operator.

=>D = l[A—£+£—£+ ] (i) using Maclaurin series
. - t3 3 g

Therefore

D f(xe) = 1[A—5+5 — 2+ | flxo) = £ (x0)
D f(xo) = f'(xo) = 2 [AFCxo) = 2 F(xo) +5 Fo0) = 2 F(x0) + v

] 1 A% A3 At
Dyo =yo = Z[A}’o —Z Yo +;y0 —2 Yo ]

Similarly, for second derivative

2
; S N S I
()= D —hZ[A —+ 4+5]
2 _1Jpa2_ A3, 11,4 5,5, . .
D* = [A AT+ AT — A+ ] After solving

1 11 5 "
D2yq = 57 [A%0 = 8%y0 + 5 A%Y0 — E8%y0 + o | = 93



USING BACKWARD DIFFERENCE OPERATOR “V”

Since hD = logE = log(E™1)™! = —1log E™1 = —1log(1 - V)
Since log(1-V)=-V————— - viv vee see oue . therefore

>D=2[v+T +‘7—3——+ |- e (D)

1
h
Now D f(x)=2[v+T+2 - Vf oo | FGra) = £/ Gen)

D fxa) = f () = 2| 0fGen) + T f ) + T () =2 f ) + - |

v3 v4

, 1 v2
Dy, = Yn = VYn+7yn+?yn_Tyn+ ]
Similarly, for second derivative squaring (i) we get
()= D2 [v2 R AR AR LR ]
,o1 11 5
D%y, =y, = ﬁ[vzyn +V3y, + EV“yn + gv5yn o ]

TO COMPUTE DARIVATIVE OF A TABULAR FUNCTION AT POINT NOT FOUND IN THE TABLE

Since

(xn + ph) =

fra) + PVf(x,) + 252

P(P+1)(P+2)-----(P+n-1)

V2f(xp) + oo OV (x) e (D)

n!

Where x=x,+ph = p=

IR 2 | DN ¢ 1)

P(P+1)

(i) = y = f(x) = f(x,) + PVf(x,) + ——V2f(x,) +- RTINS 11 )|

Differentiate with respect to ‘x’ and using (i) & (ii)

dy dp

’ d P(P 1)
y =2 =28 L) + PYS(r,) + 2O

V2F(2) + - oo o | £ (x2)

@P+U

y = dip |0+ VF () + E202F () + o ] (%)



.1 2P +1) 3P2 +6P +2
Yy =7 Vf(xn) + —sz(xn) + st(xn)
h 2 6
4P3 +18P? + 22P + 6 Ve
22 f(xn) e
N (1))
Differentiate y’ with respect to ‘x’
,  d? dy' d 1 6PZ+18P+11
Y =g == [V2F(x) + (P + DV3 () + (o) VA () o
..(v)

Equation (iv)& (v) are Newton’s backward interpolation formulae which can be used to
compute 1% and 2™ derivatives of a tabular function near the end of table similarly

Expression of Newton’s forward interpolation formulae can be derived to compute the 1%, 2"
and higher order derivatives near the beginning of table of values.

DIFFERENTIATION USING CENTRAL DIFFERENCE OPERATOR (o)

1 1

Since o=E2—E 2

Since hD = log E and E = e therefore c=ez —e 2

ef—e?

Also as sinh@ = therefore o = 2sin (h—D)

2

= g = sinh(%D) = sinh™1 (g) = (%D) =D =% sinh™1 g

Since by Maclaurin series

3

1(x3) 13 x5 135 x7
2

sinh™(x) = x - 24 5 246 7

3 5 7
o 1[((3) )\, 13(G) 135 (3
E‘E<ZT>+f s T 2as 7 T

=>D =

SN




Similarly, for second derivatives squaring (i) and simplifying

2 _1[g2_ot o _
D™ =1 [a 12 %0 ]
1 o'y oy y
Dzy = y” = ﬁ [0'2 - E + W i PP (ll)

For calculating first and second derivative at an inter tabular form (point) we use (i) and (ii)
while 1% derivative can be computed by another convergent form for D; which can derived as

follows
. _1 a3 303
Since D—Z[a—§+a.................]
Multiplying R.H.S by £ == 1 which is unity and noting the binomial expansion
145
&2 -1/2 a? 304 150°
(1 +I) —_— 1 _;-I'E_m..............................
We get
_nu a? 304 a3 30°
D—E[l_? E..............................][ _E-I'm.................]
p_H a® N 40°
=S D=—|0———+ = cs e e
h 68 120
Theref = D' =Dy="Lloy-Zy+2i2 ]
erefore =Dy =1[0y — ¥ oY e s (iii)

Equation (ii) and (iii) are called STERLING FORMULAE for computing the derivative of a
tabular function. Equation (iii) can also be written as

- _H 12 3 1222 o = 1%2232
D —Dy—h[ay 3!a y+—5! g’y

71 7Y+ ]

STERLING FORMULA

Sterling’s formula is

A Av_ 2 2_12 A3 _ —A3 _ 2 2_12
y = yo+ L (20) L B a2y ) PO tya)] 20D (pty g

X—X0
h

Where p =



TWO AND THREE POINT FORMULAE

. r_ A Yir1—Yi _ yxith)—y(xi) :
Since yi=1¥i= +;l = - e e e ereeen enn e (D)
. P _V Yi—Vi- yx)-y(xi—h) .
Similarly  y; = -y ==~ L= - U ¢ 1))
Adding (i) and (ii) we get
’ (xij+h)-y(x;i—h ’ 1
2y, = ”"Ty(") = yi=5 Yo+ h) -y — R (HD)

Subtracting (i) and (iii) we get two point formulae for the first derivative

Similarly, we know that

yi = ,Al—iy,- = W = h_12 [y(x; + 2h) — 2y(x; + h) + y(x)] e evv eve oon. (iD)
And ¥ = Z—i yi = y—i_zy;:zﬁy_z

y'i= %[y(x,-) —2y(x;—h)+y(x; —2Rh)] e (D)
Similarly

y', = Z_z y; = ay”%}::yi-% — yi+1_2h};i+)’i—1

y' = y("i"‘)‘zy,f;‘i)”("i"‘) SRR ¢ )

By subtracting (iv) and (vi) we get three point formulae for computing the 2" derivative.



NUMERICAL INTEGRATION

The process of producing a numerical value for the defining integral f:f(x)dx is called

Numerical Integration. Integration is the process of measuring the Area under a function
plotted on a graph. Numerical Integration is the study of how the numerical value of an
integral can be found.

. . b . _
Also called Numerical Quadrature if fa fx)dx = Y, c;f(x;) which refers to finding a
square whose area is the same as the area under the curve.

A GENERAL FORMULA FOR SOLVING NUMERICAL INTEGRATION
This formula is also called a general quadrature formula.
Suppose f(x) is given for equidistant value of ‘X’ say a=xq, Xo+h,Xo+2h .... Xo+tnh=b

Let the range of integration (a,b) is divided into ‘n’ equal parts each of width ‘h’ so that
“b-a=nh".

By using fundamental theorem of numerical analysis It has been proved the general
quadrature formula which is as follows

_ n? n3 n? Azf(xo) n* 3 2 A3f(xo) n®  3nt 11 3 2 A4f(x0)
I'=h[nfGe) + 75 0 Go) + (5= 5) T+ (- ) 5504 (= T S — 3m2) 200 4

e FUp to (n + 1)terms]

Bu putting n into different values various formulae is used to solve numerical integration.

That are Trapezoidal Rule, Simpson’s 1/3, Simpson’s 3/8, Boole’s, Weddle’s etc.
IMPORTANCE: Numerical integration is useful when

¢ Function cannot be integrated analytically.
e Function is defined by a table of values.
e Function can be integrated analytically but resulting expression is so complicated.

COMPOSITE (MODIFIED) NUMERICAL INTEGRATION

Trapezoidal and Simpson’s rules are limited to operating on a single interval. Of course, since
definite integrals are additive over subinterval, we can evaluate an integral by dividing the
interval up into several subintervals, applying the rule separately on each one and then
totaling up. This strategy is called Composite Numerical Integration.



TRAPEZOIDAL RULE

Rule is based on approximating f(x) by a piecewise linear polynomial that interpolates

f(x) atthe nodes "xg, X1, ... ..... Xp

Trapezoidal Rule defined as follows

3
f;:: fx)dx = g(yo +y) — ’ll—zy”(a) And this is called Elementary Trapezoidal Rule.

h
o+ 21+ y2+ -4 Yn-1) + ¥l

Composite form of Trapezoidal Rule is f;:: fx)dx =

DARIVATION (1% METHOD)

Consider acurve y = f(x) bounded by x, = a and x; = b we have to find f:f(x)dx i.e.

Area under the curve y = f(x) then for one Trapezium under the areai.e. n=1

y Y

L f02)

P —

F(xo) [~ : F(x1)

O a=Xo B=x; X

(e} a=x0 x1 b= x2 X
sum of parallel sides
2

f: f(x)dx = Area of Trapezium = X perpendicular

[P fdx = LEOTED o = 2[5 (xg) + £ ()]

2

For two trapeziumsi.e.n=2
[} fdx =2 [f(xo) + FOe)] + 5 [F(xy) + F(x2)] = S [f (x0) + 2 (1) + F(x2)]
Forn=3  [7f(0)dx =2 [f(xo) + fx)] + 5 [F(x0) + F(x)] + 5 [f(x2) + f(x)]

[2 Fdx = 2[f(xg) + 2[f(x0) + Fx)] + fx3)]



In general for n — trapezium the points will be "xq, x4, ... ...... x;;" and function will be
Vo, Vi, e e VY

b h
|| £z =317 Gr0) + 217G + £G2) + ot fCow)] + £G0)
b h
f f(x)dxzi[y0+2(y1+y2+--- ......... + Yn-1) + Yal

Trapezium rule is valid for n (number of trapezium) is even or odd.

The accuracy will be increase if number of trapezium will be increased OR step size will be
decreased mean number of step size will be increased.

DARIVATION (2" METHOD)

Define y = f(x) in an interval [a, b] = [x(, x,,] then

fxof(x)dx = fxlf(x)dx + fxzf(x)dx + o .....+fxn f(x)dx
o h h h
| reodx =300+ ]+ [3 01+ ]+t [ O+ )] e
Where €,= —:—Z [y'(ay) +y"(az) + -+ ...........+ ¥"(a,)] is global error.

h3 "
—=€,= — = [ny" ()]

Therefore f:f(x)dx = g[yo +2(y1+y2+ + ¥Yn-1) + ¥nl Where a=xyandb = x,,

REMEMBER: The maximum incurred in approximate value obtained by Trapezoidal Rule is

(b-a)3M
12n2

nearly equal to where M = max|f"(x)| on [a,b]

EXAMPLE: Evaluatel = folrzzdx using Trapezoidal Rule when h = %
SOLUTION

X 0 1/4 1/2 3/4 1

F(x) 1 0.9412 0.8000 0.6400 0.5000

Since by Trapezoidal Rule f:ﬁdx = g[y0 +y4+2(y; +y2+y3)] =0.7828




SIMPSON'S (3) RULE

Rule is based on approximating f(x) by a Quadratic Polynomial that interpolate f(x) at
Xi—1, X and x4

Simpson’s Rule is defined as for simple case f;;z fx)dx = g[yo + 4y, +y,] — gy“’({j)
While in composite form it is defined as

f;;z”f(x)dx = 2[}’0 +4(y1+t Y3+ Vv F 202 Yot + ¥Yan-2) + Ynl
Global error for Simpson’s Rule is definedas €= —%h“y“’(@ = 0(h"

REMARK

In Simpson Rule number of trapezium must of Even and number of points must of Odd.

DERIVATION OF SIMPSON’S (%) RULE (1° method)

Consider a curve bounded by x =a and x = b and let ‘c’ is the mid-point between a and b such

thata << b we have to find f: f(x)dx i.e. Area under the curve.

Y
f(c)
\
Al Bl cC
a X
Consider X=C+Y..........(I) > dx=dy

Nowc=0B=0A+AB=c=a+h =a=c—h
b=0C=0B+BC=b=c+h
(i) >putx=athena =c+y =>c—-h=c+y=-h=y

putx=bthenc+h=c+y=h=y



Now f: f(x)dx = fj:f(c + y)dy wherey is small change
2
Using Taylor Series Formula f(x + h) = f(x) + hf'(x) + %f”(x) +

fj:f(c +y)dy = fj: [f( c)+yf'(c)+ J;—Z!f”(c) + o ] dy

Neglecting higher derivatives

[5G+ ydy = [FE[f(0 +yf'© + L7 ©)] dy
2 3 h 2
[ Fle+y)dy = [yf(0) + 5@ + 35 5@]_ = 2h[f(©) + 75 f (@) e (D)

f@ = fc—h) = f(c) — hf'(c) + = f"(c) + neglected

f(b) = flc+h) = £(0) + hf'(©) + 2 f"(c) + neglected

fle—h) — flc+h) = 2f(c) + 22 f"(©)

flc—h) — f(c + h) — 2f(c) = h2f"(c) Put this value in (i)

[? f0dx = 2h[f(c) + S {f(c — ) + f(c + h) — 2f(c)}]

[P f0dx =2 [6£(c) + f(c— b) + f(c + b) — 2f(c)]

[7 F0)dx = [4F(0) + f(c — ) + f(c + B)] = 3 [4f(c) + f(a) + £ ()]

[P F)dx = 2[4f (x1) + f(x0) + F(x2)] = £ [4y1 + Yo + ¥2]

Forn=4

h
3

f,:: f(x)dx = f,:)z f(x)dx + f;:f(x)dx =2[yo + 4y + ¥yl + g [y2 + 4y35 + Y4l

h
o fdx = Z[yo + 4(y1 +¥3) + 2y2 + ¥4l

In General

h
f:OZNf(x)dx =3 (Yo +4(y1+ Y3 oo Von-1) + 2(V2 + Y4 oo ... + ¥Yan-2) + Yanl



DERIVATION OF SIMPSON’S (%) RULE (2" method)

f;)”f(x)dx = f;}zf(x)dx + f;:f(x)dx IR & f;zzl\’,"_z f(x)dx
fx?N f)dx = g[}’o +4y1+y2]+ g [y2+4y3+yal+ -----+§[)’21v—2 +4Y2n-1+ Y2n]

h
f;)”f(x)dx -3 Yo +4(y1+y3 ... Yon-1) + 2(¥2 + Y4 ... + Yan-2) + Yan]

This is required formula for Simpson’s (1/3) Rule

EXAMPLE
2
Compute I = \/%fol e z2dx using Simpson’s (1/3) Rulewhen h = 0.125

SOLUTION

X 0 0.125 0.250 0.375 0.5 0.625 0.750 | 0.875 |1

F(x) | 0.798 0.792 0.773 0.744 0.704 0.656 0.602 | 0.544 | 0.484

Since by Simpson’s Rule
2
2 1 X h
\/;fo e 2dx=;[yo +yg + 4(y1 + ¥3 + ¥5 + ¥7) + 2(¥2 + Y4 + ¥6)]

x2
2 1e~Zdx = 0.6827 After putting the values.
]



SIMPSON'’S () RULE

Rule is based on fitting four points by a cubic.

Simpson’s Rule is defined as for simple case
5

% 3h 3hS
f f(x)deF[)'o+3J’1+3)’2 +J’3]—W)’ ®
X0

While in composite form (“n” must be divisible by 3) it is defined as

f;:)”f(x)dx = % [yo + 3(}’1 + Y2 T+ o +yN—1) + 2()’3 + Yo o +yN—3) + yN]
DERIVATION
XN X3 X6 XN
f f(x)dx = f f(x)dx + f f)dx + oo+ f f(x)dx
X0 X0 X3 XN-3

3h 3h
L2 FOodx = o +3y1 + 3y2 + y3] + 7 [y3 + 3y4 + 3¥5 + ¥

3h
o L +? [yN—3 + 3yN—2 + 3yN—1 + yN]

3h
f;)”f(x)dx =5 Vo+3(y1+y2+ i tyn-1) +2(y3+ Y6+ oo +Yn_3) + Yul

This is required formula for Simpson’s (3/8) Rule.

REMARK: Global error in Simpson’s (1/3) and (3/8) rule are of the same order but if we
consider the magnitude of error then Simpson (1/3) rule is superior to Simpson’s (3/8) rule.



TRAPEZOIDAL AND SIMPSON’S RULE ARE CONVERGENT

If we assume Truncation error, then in the case of Trapezoidal Rule

_ (b—a)h?
12
“I'mt h = 0” then assuming “y>” bounded

I-A= ¥%(§8) Where “I” is the exact integral and “A” the approximation. If

"lmt (I — A) = 0" (This the definition of convergence of Trapezoidal Rule)

For Simpson’s Rule we have the similar result

oA _(b—a)h4 4
I-4=——2=y*§)

If ‘lmt h = 0” then assuming “y*” bounded

"Imt (I — A) = 0" (This the definition of convergence of Simpson’s Rule)

ERROR TERMS
Rectangular Rule h* | Xo < § < xq
ETRAS)

Trapezoidal Rule i X0 <§<x;
127 ®

Simpson’s (1/3) Rule 5 X< §<x;
- %3’"’@)

. , 5
Simpson’s (3/8) Rule _ﬂyiv@) Xo<§<xq

80



WEDDLE'S

In this method “n” should be the multiple of 6. Rather function will not applicable. This
method also called sixth order closed Newton’s cotes (or) the first step of Romberg
integration.

First and last terms have no coefficients and other move with 5, then 1, then 6.
Weddle’s Rule is given by formula

3n| f(xo) +5f(x1) + f(xz) + 6f(x3) + o +

b _
Ja FOOdx = g A5 (s) + f(Rug) + 6fCtny) + F(x)

EXAMPLE: for [[7°—dx at n=6

X 0.25 0.5 0.75 1 1.25 1.5 1.75
F(x) 0.9411 0.8 0.64 0.5 04 0.3 0.2

Now using formulafol.gssﬁdx = 3((;':5) [yo + 5y1 + Y2 + 6y3 + 5y, +y5 + y6] = 0.8310

BOOLE’S RULE

The method approximate f;}‘* f(x)dx for ‘5’ equally spaced values. Rule is given by George

Bool. Rule is given by following formula

b 2h
J, Fodx = 25 L7Yo +32y1 + 12y, + 32y3 + 7y,

) 06 1 _ _
EXAMPLE: Evaluate [, —dxat n=4andh=0.1
SOLUTION

X 0.2 0.3 0.4 0.5 0.6
F(x) 0.96 0.92 0.86 0.80 0.74

06 1 d _2(0.1)[

Joz oz dx=="[7y0 + 32y1 + 12y, + 32y;3 + 7y,]

Now using formula
06 1

) 02 T3 dx = 0.3399 After putting the values.



RECTANGULAR RULE

Rule is also known as Mid-Point Rule. And is defined as follows for ‘n + 1’ points.
[2 FO)dx = h[F(x0) + F(X1) + v+ F ()]

In general f: f(xX)dx=hYl, f(x)

REMEMBER

e As we increased ‘n’ or decreased ‘h’ the accuracy improved and the approximate
solution becomes closer and closer to the exact value.

e If ‘n’ is given, then use it. If ‘h’ is given, then we can easily get ‘n’.

e If ‘n’ is not given and only ‘points’ are discussed, then ‘1’ less that points will be ‘n’.
For example, if ‘3’ points are given then ‘n’ will be ‘2’.

¢ If only table is given, then by counting the points we can tell about ‘n’.one point will
be greater than ‘n’ in table.

EXAMPLE
Evaluate f13 xlz dx for n = 4 using Rectangular Rule.

SOLUTION

Herea=1,b=3then h = bn;a=0.5

X

3/2

2

5/2

F(x)

4/9

1/4

4/25

1/5

Now using formula

[? 2 dx = h[f(xo) + f(x1) + f(x5)] = 0.925




DOUBLE INTEGRATION

D le In ral
Trapezoidal Rule

d b
Ewvaluate J—J-f(x, v)dxdywhere a, b, ¢, d are constants.

® KL )
G

J ™M N

I o P
D) | E | F

~<=:[sum of values in]+2(sum of values in 1 +4[sum of remaining values}

_ hk
4

Simpson’s Rule
€umof the valuesof f at fourcorners:

I

+ 2(sumof the values of f at theodd positions on the
boundaryexcept thecorners)

+ 4(sumof the values of f at theeven positions on theboundary)
hik |+ {4(sumof the values of f at theodd positions) +

9 [8(sumof the valuesof f at theeven positions)

on theodd row f of the matrix exceptboundaryrows }+
{8(sumof the values of f at theodd positions) +

16(sumof the values of f at theeven positions)

on theevenrow f of the matrix }

Problems bas n Double in rals
1

4
1. Ewvaluate J- dedy using Trapezoidal and Simpson’s rule. Verify your result by actual
1

224 X—y
integration.

Solution:
Divide the range of x and y into 4 equal parts
h = 24-2_ 0.1

4
e — 14 -1 0.1

4

1 .
Get the values of f(x, y) = — at nodal points
Xy

Y/X 2 2.1 2.2 2.3 2.4

1 0.5 0.4762 0.4545 0.4348 0.4167
1.1 0.4545 0.4329 0.4132 0.3953 0.3788
1.2 0.4167 0.3968 0.3788 0.3623 0.3472
1.3 0.3846 0.3663 0.3497 0.3344 0.3205
14 0.3571 0.3401 0.3247 0.3106 0.2976
Now using previous formulae we get the required results

FOR TRAPEZOIDAL RULE: I1=0.0614 FOR SIMPSON’S RULE: I1=0.0613

Verify actual integration by yourself.




QUESTION: Evaluate flz flz % by Trapezoidal rule for h = 0.25 = k

SOLUTION: 1 <x<2 = X9 = 1,x1 =Xy + h = 1.25,x2 = 1.50,x3 = 1.75,x4_ =2

And 1S}’S2 = Yo = 1,y1 :y0+k: 125,)’2 = 150,)’3 = 175,y4:2

STEP—-1I: f(x,y) = ﬁ

Y/X 1 1.25 1.50 1.75 2

1 1 o5 0.4444 0.4 0.3636 0.3333
1+1

1.25 0.4444 0.4 0.3636 0.3333 0.3077

1.50 0.4 0.3636 0.3333 0.3077 0.2857

1.75 0.3636 0.3333 0.3077 0.2857 0.2667

2 0.3333 0.3077 0.2857 0.2667 0.25

STEP I I

L= [ Fdy =5 [F(Lye) + F(Lys) + 21F(Ly2) + F(Ly2) + F(1,y)] = 0.4062
I, = 1Jf(1.25,y)uty = ;[f(l. 25,y0) + f(1.25,y,) + 2[f(1.25,y,) + f(1.25,¥,) + f(1.25,y3)] = 0.3682
I; = Jf(l.s,y)dy = g[f(l.s,yo) + f(1.5,y,) + 2[f(1.5,y,) + f(1.5,y,) + f(1.5,y5)] = 0.3369
1
Iy = 1f,m. 75,y)dy = ;[f(l. 75,50) + F(1.75,y4) + 2[f(1.75,y1) + f(1.75,y,) + f(1.75,y3)] = 0.3105

k
1

STEP -l

I= [} [J22 =2l + 15+ 200, + 15+ 1)] = 0..3407



QUESTION: Evaluate f:/z f:/z,/sin(x + y) dxdy
SOLUTION: Take n = 4 (by own choice) then h = ? = # = g = k (also)

T s
O<x< = Xy = Oxl—x0+h—§ 2=Z,x3=—

4

3
And 1<y<Z =y,=0y1=yo+k=5,2=7,¥3="3 V1=

STEP-I: f(x,y) = /sin(x+y)

Y/X 0 T T 3m T
8 4 8 2
0 0 0.6186 0.8409 0.9612 1
n 0.6186 0.8409 0.9612 1 0.9612
8
n 0.8409 0.9612 1 0.9612 0.8409
4
3_1T 0.9612 1 0.9612 0.8409 0.6186
8
n 1 0.9612 0.8409 0.6186 0
2
STEP -1 I:

[f(o» Yo) + £(0,y4) + 2[f(0,y1) + f(0,y2) + f(0,y3)] = 1.1469
%

= 1(g )y =51 (gowo) + £ (g.vs) +2[r (g.on) + 1 (g v2) + £ (g s)| = 1.4106

(g o) ar =30 (g ) +r(gon) +2[r (g ) +r(Gon) 1 (G

k /3m 3 3t 3T 3T
a ,y> dy = 5[f<?,yo> +f<?,y4> + 2 [f (7.3/1) +f<?:J’2> +f<?.y3>] =1.4106

2[f Goya) +£Gye) +£ (53

1= /Zf "2 [sin(x + y) dxdy—g [I1+1s +2(I2 + I3 + 1,)] = 2.1386

)] =1.4778

Is= 03 () dy =517 (Zyo) + £ (Gva) +
STEP -l

)] = 1.1469




|NI=I

- -0
SOLUTION: Take n = 4 (by own choice) then h = % =4-= % = k (also)
1<x<2 Asol<y<2

STEP-1I: f(x,y) = x2+y

Y/X 1 1.25 1.50 1.75 2

1 0.5 0.3902 0.3077 0.2462 0.2
1.25 0.3902 0.3200 0.2623 0.2162 0.1798
1.50 0.3077 0.2623 0.2222 0.1882 0.1600
1.75 0.2462 0.2162 0.1882 0.1633 0.1416
2 0.2 0.1798 0.1600 0.1416 0.1250

STEP -l I

k
I = ff(l,y)dy = E[f(l;)'o) +f(Lys) +2[fA,y) + f(A,y2) + f(1,y3)] = 0.3235

2
k
I, = ff(l.ZS,y)dy = E[f(l- 25,y0) + f(1.25,y,4) + 2[f(1.25,y4) + f(1.25,y,) + f(1.25,y3)] = 0.2709
1

k
I; = ff(l- 5,y)dy = S [f(1.5,y0) + f(1.5,y4) + 2[f(1.5,y1) + f(1.5,y2) + f(1.5,y3)] = 0.2266
1
k
I, = ff(l- 75,y)dy = E[f(l. 75,90) + f(1.75,y4) + 2[f(1.75,y1) + f(1.75,¥,) + f(1.75,¥3)] = 0.1904
1

k
Is = jf(Z,y)dy =3 [f(2,y0) + f(2,y4) + 2[f(2,y1) + f(2,y2) + f(2,y3)] = 0.1610
1

STEP -l

1= (2229 M 40+ 21 + I + 1,)] = 0.2325

1 x2+y2




QUESTION: Evaluate f01 flz(x2 + y2)dxdy by using Simpson (1/3) rule

b-a 1-0

SOLUTION: Take n = 4 (by own choice) then k = — == 0.25 = h (also)
1<x<2 Aso0<y<1

STEP-I: f(x,y) = x* + y?

Y/X 0 0.25 0.50 0.75 1

1 1 1.6250 1.25 1.5625 2

1.25 1.5625 1.6250 1.8125 2.1250 2.5625
1.50 2.25 2.3125 2.5 2.8125 3.25
1.75 3.0625 3.1250 3.3125 3.6250 4.0625
2 4 4.0625 4.2500 4.5625 5

STEP -l I

k
3

I, = fol fLy)dy =Z[f(L,yo) + f(1,y4) +2f(1,y2) + 4[f(1,y1) + f(1,¥3)] = 1.3333

I, = [ f(1.25,y)dy = 5 [f(1.25,y0) + f(1.25,y,) + 2f(1.25,y,) + 4[f(1.25,y1) + f(1.25,y5)] = 1.8958
I3 = [ £(1.50,y)dy = 5 [f(1.50,30) + f(1.50,y,) + 2f(1.50,y,) + 4[f(1.50,1) + f(1.50,y3)] = 2.5832
Iy = [y f(1.75,y)dy = 5 [f(1.75,y0) + f(1.75,y4) + 2f (1.75,y,) + 4[f(1.75,1) + f(1.75,y5)] = 3.3958

Is = Jy 2. 3)dy =5[f(2,y0) + f(2.74) + 2f(2,72) + 4[f(2.1) + f(2,¥5)] = 4.3316
STEP Il

1 .2 h
I= [y J{(*+y"dxdy =3




GUASSIAN QUADRATURE FORMULAE

DERIVATION OF TWO-POINT GAUSS QUADRATURE RULE

Method 1:

The two-point Gauss quadrature rule is an extension of the trapezoidal rule approximation
where the arguments of the function are not predetermined as a and b, but as unknowns x;
and x,. So in the two-point Gauss quadrature rule, the integral is approximated as

b
J, F()dx = c1f (x1) + c2f (x2)

There are four unknowns x3, X,, ¢; and ¢,. These are found by assuming that the formula gives
exact results for integrating a general third order polynomial,

f(x) =ay + a1x + ax? + azx3.

Hence fbf(x)dx =fb(a0 + a;x + ax? + azx3)dx
4 b
f f(x)dx = |(a0x + a; > 5 - 4 az ] "+ a3T)

2 feodx = [ag(b - a) + ay (>

)+az

3D e ()

The formula would then give

b
J, F)dx = c1f(x1) + €2f (x2) = e1f (x1) + &2 f (x2)

=c1(ag + arx; + axd + azx3) + c;(ag + a1x; + axx5 + azx3)

.. (IQ)
Equating Equations (i) and (ii) gives
b%—a? b3-a3 b*—a*
ap(b—a)+ al( 2 )+ az( 3 )+ a3( 4 )

=ci(ag + ayx; + axx} + azx}) + c;(ag + ayx, + axi + azxj)
This will give us

f f)dx = ag(cy + ¢2) + ag(c1x1 + €3x3) + az(c1xF + ¢2x5) + az(cyx3 + c,x3)

. (TiD)

Since in Equation (iii), the constants ay, a;, a,, and as are arbitrary, the coeff|C|ents of do, a1,
a,, and az are equal. This gives us four equations as follows
( (b—a)=(cy+c2)

(bz_az) = (c1x1 + €2x3)

(017 [T (bS;as) = (C1x1 + szz)

\(bta‘}) (c1x} + cox3)




we can find that the above four simultaneous nonlinear equations have only one acceptable
solution

17 2 7%27 2 172 V3 2’ 272 /)\3 2

Hence
[ f@dx=af )+ af ) =2 f [(5°) (- 5) + 5] + 5 |(55) () + 5

Method 2

We can derive the same formula by assuming that the expression gives exact values for the

b
individual integrals of [ ' 1dx, f: xdx, f: x2dx, and f: x3dx. The reason the formula can also
be derived using this method is that the linear combination of the above integrands is a
general third order polynomial given by f(x) = ay + a;x + azx* + aszx3.

These will give four equations as follows

( f:ldx= (b—a) =(cq +¢3)
b 2_,2
J, xdx = (b Za ) = (c1x1 + €2X3)
f: x?dx = (b3ga3) = (c1x% + €2x3)

Lf:x3dx.= (b4;a4) = (c1x3 + €2%3)

These four simultaneous nonlinear equations can be solved to give a single acceptable
solution

b—a b—a b—a 1 b+a b—a 1 b+a
C1=7F,60=7, X1 = (T)(‘Tﬁ) T 2= (T) (ﬁ)+7

b—

e (2160 vt =51 [(59) () #2555 (50 8) 425

2 2 2 2

Since two points are chosen, it is called the two-point Gauss quadrature rule. Higher point
versions can also be developed.



Higher point Gauss quadrature formulas
For example

b . .
fa f(x)dx = c1f (x1) + c2f (x2) + c3f (x3) is called the three-point Gauss quadrature rule. The
coefficients c;, ¢; and ¢;, and the function arguments x;, x, and x; are calculated by assuming
the formula gives exact expressions for integrating a fifth order polynomial

b
J, (@ + ayx + azx® + azx® + aux* + asx®)dx
General n -point rules would approximate the integral

[P FOOdx= eaf (xa) + af () o + nf (Xn)

A number of particular types of Gaussian formulae are given as follows.
GUASSIAN LEGENDER FORMULA

This formula takes the form f:f(x)dx =Y1A4:f(xp)

1
2n+1

[f(D) + f(=1) + I - 2T Aix;if' (x;)

And Truncation error for formulais E =

Where “I” is the approximate integral obtained by n — point formula.

GUASS - LAGURRE FORMULA

This formula takes the form fooo e *f(x)dx = YT A;f (x;)

GUASS — HERMITE FORMULA

This formula takes the form fjooo e‘xzf(x)dx =YTAif (x)

GUASS — CHEBYSHEV FORMULA

This formula takes the form f_ll\/% dx = % 1f(x)

Where “x;” is zero n — Chebysheves polynomial



NEWTON’S COTES FORMULA

A quadrature formula of the form f: f(x)dx = Y5 C;f(x;) is called a Newton’s Cotes

Formula if the nodes "xg, x1, ... ... ..., X" are equally spaced. Where

X—Xj

dx

xi—xj

b b
C; = fa L;(x)dx = fa [Tj=o
J#i

General Newton’s Cotes Formula has the form
b n n t_j 1 b n
[reax=nY s | | [i=5de+ g | @0 ] Joe-xo ax
a o L li—j n+1)!),
0 Jj=0 i=0
j#i

REMARK: Trapezoidal and Simpson’s Rule Are Close Newton Cotes formulae while

Rectangular Rule is Open Newton Cotes formula.
LIMITATION OF NEWTON'’S COTES

Newton’s Cotes formulae (Simpson’s, Rectangular Rule, and Trapezoidal Rule) are not
suitable for Numerical integration over large intervals. Also Newton’s Cotes formulas which
are based on polynomial interpolation would be inaccurate over a large interval because of
oscillatory nature of high degree polynomials. To solve this problem, we use composite
Numerical integration.

FORMULA DARIVATION

We shall approximate the given tabulated function by a polynomial "P,,(x)" and then
integrate this polynomial.

Suppose we are given the data (x;,y;) ;i =0,1,2, ... ....n at equispaced points with spacing
h = x;,1 — x; we can represent the polynomial by any standard interpolation polynomial.

Now by using Lagrange’s formula  f(x) = X0 L (X)) Vi v e ve vee v v (D)

With associated error term E(x) = %y"“@) SRR € 1)
. (x)

And l,(x) = GGy o oo e oo e e (iii)

Where TI(x) = (x —x9)(XxX —X1) v e v vee e e (X — X)) i e v e (D)



Integrating (i) from a = xogto b = x,, w.r.to‘x’

[P0 dx = [P IR Ly dx = [Tlo()yo + LDy + - vt L0 yldx

[} ) dx = 38 [ L()yi dx = 52 ([ 1u(0)) yrdx = T8 Ceyy where Cp = [, L(x) dx
And "C." are called Newton’s Cotes ce e e e een e e e eees (D)

HOW TO FIND NEWTON'’S COTES?

Let equispaced nodes are definedas a = x, to b=x,, and h = ? and x, = xo + kh

change the variable x = xy + ph
Since a = xg = xg + 0h, x; = x¢ + 1h, ................. b=x, =x9+nh And x = xy + ph

Using above values in (IV) we get

M(x) = (xg + ph—x9)(xg + ph— X1) o v v e e o (Xo + PR — x3)
II(x) = phlxg + ph — (xg + h)][xg + ph — (xg + 2h)] ... ... ... ... ... [Xg + Ph — (x¢ + nh)]
I(x) = ph(ph — h)(ph — 2h) .................. ... ...(ph — nh)
NX)=h""1pP-1DP-2) e eee . (p — M) VRN 7 )|

o (=x0)(r=x1) e (X=X 1) (X=X 1) e (x—xp)
So lk(x) - (Xp=20) (X —X1) v (€T TP € 77 79 DTN (Xg—xn)

Now xy = xg + kh and x, =xo +t ph = x,—x,=(k—p)h

When p=0=x;, —x9g=(k—0)h=kh
p=1=x,—x;=(k—-1)h Ifx=b,x,=a
x_xo
p=k—1=x,—x,_1=h h—a =P
p=k+1=>xk—xk+1=—h n
= n=p

p=n=x,—x,=(k—nmh=—-(mn—-k)h

Now putting in "[;(x)" we get



l (x) __ (xo+ph—x9)(xg+ph—x9—h).......... (xo+ph—x9—nh)
kA= (kb (k=D h(k=2) R h.(—=h)(~2h)[-(n—k)h]

l (x) __ hp.h(p—1D)h(p-2)......h[p—(k—1)]h[p—(k+1)].....h(p—n)
k ~ (hk)h(k—=Dh(k—=2)....h[k—(k—1)]h[k—(k+1)]....h(k—-n)

1 (x) = hp(p-1)(p-2)...... [p-k+1][p—k—1]........... (p—n)
kA = g (=) (k=2) o 2] (=D K[ 1.2 (—K)]

_ pp-1)(p-2)........ [p—k+1][p-k-1].......... (p—m)
Le(x) = K~ )"k (n—k)!

_ pp-1)(p-2)......... [p—k+1][p-k-1].......... (p-n) _ (-)"k
Le(x) = Kl(—1)"k(n—k)! (—1)n—k

_ O pp-D(p-2)......[p-k+1][p-k-1].........(p—n)
lk(x) - k!(-1)2(m—k) (n—k)!

_ O pp-D(Pp-2)......[p-k+1][p-k-1].......(p-n)
L (x) = ki(n—k)!

N ¢ 1))

Since Cj = b 1, (x) dx therefore after putting "1, (x)" and “dx”
a

As"x = xo + ph" thendx=hdp and if x > athenp —» 0 alsox > bthenp > n

_1 n—k
C, = ,(d(n)_k)!f:p(p—l)(p—Z) ...... P-k+DpP—-k—-1).... (p —n).hdp

-1 kh
Ck:(k!(i—_k)!f:p(p—l)(p—Z) ...... pP-k+DpP-k-1)....(p—n)dp

This is required formula for Newton Cotes.

ERRORTERM let € (x)= %y"“@) e e (A)
nNx)=h"1pp-DP-2)....(p—n) ..ceo.... (B)

. . _ h"lp(p-1)....... (p—n) y*+1(§)
Using (B) in (A) weget € (x) = i)

n+1 _ _ n+1
Integrating both sides f: € (x)dx = fonh Cpet Dp@ 1zn+1)' """"" @y (S hdp
_ e e _ _

E(x) = D JoP@=D@=2) e (p — )dp

E(x) is called integral error.



ALTERNATIVE METHOD FOR DARIVATION OF TRAPEZOIDAL RULE AND ITS ERROR TERM

f@) = Tiole i+ s y™ 1 (§)

For trapezoidal ruleput n =1 f(x) = Yi_o L (O)yr + —= “(x) y' ()

F() = Ly, + Ly, + 220520 i ()

Integrating both sides

[T fGdx = o [2 LG0dx +yy [ Gdx + 252 [¥ - x0) (x — xy)dx

f;:)l f(x)dx =Y fxl (x—x1) dx + 1fx1 (x—x9) dx +y 2(§) ;)1

x0 (xp—x1) x0 (x1—xp)

Now by changing variables

xX=x9+ph thenx->xy=>p—-0and x; =x¢y+1hthenx->x;=>p->1

1 (xg+ph)—(xo+1h).hdp 1 (xg+ph)—x¢.hdp
f fx)dx = yof xo—(xo+1h) + 1'[0 (xo+ph)—xo

r 1
+2 z(§) Jo (o + ph — x0)[(x¢ + ph) — (x¢ + 1h)]. hdp

1 h(p—-1)hd 1 ph.hd (§)
[E fOOdx = yo [y 2Ry (PR YD [y h(p — 1)]hdp

£ pox = yoh 252 1y 2] 4 2

IXI f(x)dx = yozh + y;h y1;§) h3 Asrequired.

SIMPSON’S RULE AND ERROR TERM

. -1 n—k
Since Cj = (k'(i k)'f pp—-1DpP-2).... P-k+DpP—-k—-1).... (p —n)dp

.. (D)

pnt2yn+l
And E,(x) = (n+)!(§)f0np(p —1D)P-2) i (p —M)dp

. (i)



Puttingn =2,k =0in (i) we get

(-2 Oh (2 h -2 h 2
Co = 0!(2—0)! Jo@—D(—-2)dp = Efo r—D(@—2)dp = Efo (p?> —3p +2)dp

2
h|p® 3p? h (2 h
C :_|_—— 2 | :—(—):—
0=33 2t Pl,=2G) T3

Now Puttingn=2, k=1in (i) we get

(—DLh )
€1= 16- 1)'f p(p - 2)dp = —h [ (p? —Zp)dp——h|—_p| = th

Now Putting n = 2, k=2 in (i) we get

=S Zpp—Ddp =2 |———| :(-2)=3

ERROR TERM FOR SIMPSON’S RULE

Now Putting n = 2 in (ii) we get
Y (2 p(p? — 3p + 2)dp

h2+2 2+1 § 2
E;(x) = (2+)!()f0 p(p—1D(p—-2)dp =

h4y3 p3 22 pa,3
E,(x) = y<§>| 3v° 2L| =y_<§>(2_8+4)=0
2 g 3! 4
. . N A O)
Error term is zero so we find Global error term E, = — %0

Now forn=3
f:f(x)dx = Yr-0 Ck¥i = CoYo + C1¥1 + C2y2 + C3y3 + E3(x) .. (1)

5,4
_3h o 9% . _%h . _ 38" E;(x) = —3h+0(§) then (i) becomes

3h 3h5y*(§
fx?f(x)dx =5 Yo +3y1+3y2 +y3] - go( )




DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATION
It is the relation which involves the dependent variable, independent variable and
Differential co-efficient i.e.

d

- d d
fey)=g=100 =E-tdy=y-yo =y=y+{t-to)y

ORDINARY DIFFERENTIAL EQUATION

If differential co-efficient of Differential Equation are total, then Differential Equation is

2
called Ordinary Differential equation. e. g. % +3 % + 5y =2x

PARTIAL DIFFERENTIAL EQUATION

If differential co-efficient of Differential Equation are partial, then Differential Equation is
2y Fx_

called Ordinary Differential equation. e.g. a2 oz =

ORDER AND DEGREE OF DIFFERENTIAL EQUATION

The highest derivative involved in the equation determines the order of Differential Eq. and
the power of highest derivative in Differential Eq. is called degree of D.E. for example

dzy dy 3 _ “u~yn uqn
2 + (E) + y = 0 has order “2” and degree “1

SOLUTION OF DIFFERENTIAL EQUATION

It is the relation which satisfies the Differential Equation as consider

d%y _
az Ty =0

Then y = sinx, cosx, 3sinx,20cosx Are all solution of above equation.
THE MOST GENERAL SOLUTION

It is the solution which contains as many arbitrary constants as the order of differential
equation.e.g. y'+y=01Isa 2" order Differential Eq. with constant co-efficient and
general solutionis y = c;cosx + c;sinx



PARTICULAR SOLUTION

Solution which can be obtained from General Solution by giving different values to the
arbitrary constants "cq,¢;" iny = cycosx + cysinx For example y = 4cosx + 7sinx

SINGULAR SOLUTION: Solution which cannot be obtained from General Solution by
giving different values to the arbitrary constants.

SOLVE THE FOLLOWING DIFFERENCE EQUATIONS.

YVi+z — 13Yp41 + 36y, =0 short question
YVis2 — 7YVrs41 + 12y, = sin3k Long question

HOMOGENOUS DIFFERENTIAL EQUATION

A differential equation for which "u = 0" is a solution is called a Homogenous Differential
Equation where ‘U’ is unknown function. In other words, a differential equation which always
possesses the trivial solution "u = 0" is called Homogenous Differential Equation.

NON-HOMOGENOUS DIFFERENTIAL EQUATION

A differential equation for which "u # 0" (i.e. Non-Trivial solution) is a solution is called a
Nonhomogeneous Differential Equation where ‘U’ is unknown function.

INITIAL AND BOUNDARY CONDITIONS

To evaluate arbitrary constant in the General solution we need some conditions on the
unknown function or solution corresponding to some values of the independent variables.
Such conditions are called Boundary or Initial conditions.

If all the conditions are given at the same value of the independent variable, then they are
called Initial conditions. If the conditions are given at the end points of the independent
variable, then they are called Boundary conditions.

INITIAL VALUE PROBLEM

An initial value problem for a first order Ordinary Differential Equation is the equation
together with an initial condition on a specificinterval a<x<b

Suchthat y' =f(x,y),, y(a) =y, , and x € [a, b]

The equation is Autonomous if (y’) is independent of ‘x’



BOUNDARY VALUE PROBLEM

A problem in which we solve an Ordinary Differential Equation of order two subject to
condition on y(x) or y’(x) at two different points is called a two point boundary value
problem or simply a Boundary value problem.

OR A differential equation along with one or more boundary conditions defines a
boundary value problem.

CONVEX SET

A set D c R? is said to be convex if whenever (t;,y;) and (t;,y;) belong to ‘D’ then
[(1 -ty + At,, (1 — )y, + Ay, ] also belong to ‘D’ for every "A" in [0, 1]

LIPSCHITZ CONDITION

A function f(t, y) is said to satisfy a Lipschitz condition in the variable ‘y’ onaset D c R?ifa
constant ‘L > 0’ exists with

|f(t,y1) — f(t,y2)| < L|y; — y2| Whenever (t,y;) and (t,y,) arein ‘D’ and ‘L’ is called
Lipschitz constant for ‘f’

WELL - POSED PROBLEM

The initial value problem % =f(x,y) ; a<x<b;y(a) = aissaid to be a well - posed

problem if
A unique solution y(x) to the problem exist.

There exist constants €,> 0 and k > 0 such that for any " € " with €;,>€> 0 whenever
&(x) is continuous with [§(x)] <€ V x € [a, b] and when §, <€ the initial value

problem % =f(x,z2) + 6(x); a<x<b;z(a) =a+ 8§, hasaunique solution z(x)

that satisfies [z(x) —y(x)| < k € V x € [a, b]

dz . . o d
The problem d—i is called a Perturbed problem associated with d—z



SOME STANDARD TECHNIQUES FOR SOLVING ELEMENTARY DIFFERENTIAL
EQUATIONS ANALYTICALLY

%+ SECOND ORDER HOMOGENEOUS LINEAR DIFFERENCE EQUATION..........ccc.... |

Tosolveu,, =u,_{ +u,_, giventhatuy,=1=uythenu, —u,_ 1 —u, , =0
then zero on the right hand side signifies that is a homogeneous differential equation.

Guess u, = Aw" then AW —Aw" 1 —Aw" 2 =0 = w?-w—-1=0
This is the auxiliary equation associated with the difference equation. Being a quadratic, the

auxiliary equation signifies that the difference equation is of second order.

1+/5 1-V/5
and w, = —

for any A;substituting A;w} for u, inu, — u,,_; — u,_, yield zero
for any A,substituting A,w} foru, inu, —u,_1 — u,_, yield zero

The two roots are readily determined w; =

n n
This suggest a general solution u,, = A,w} + A,w} = A, (1+2\/§) + A, (1_7\5)

By using initial conditions up, = 1 = u4 one can get the values of 4; and A,

. _1+/5 _ 15
That is A1 = ﬁ and AZ = _2\/§
. _1+V5 (1+VB\" 1-V5 (1-VE\"
Then general solution becomesu,, = 275 ( 5 ) BN (T)
n+1 n+1
thus u, = \/ig l(HT\/g) - (%E) l as the final solution.

%+ SECOND ORDER HOMOGENEOUS LINEAR DIFFERENCE EQUATION.................. I

To solve u,, = pu,,1 + qu,,_q1 giventhatuy,=0,u; =1landp+q=1
then pu,,1—u,+qu,_1=0

Guess u,, = Aw" then pAw™™! —Aw" + gAW™" 1 =0 =>pw? —-w+q=0

The two roots are readily determined w; =1 and w, = %

n
This suggest a general solution u,, = A;(1)" + A, (1%) provided p # q
By using initial conditions uy = 0,u; = 1 and p + q = 1one can get the values of
Ajand A, Thatared, =— A, =—>
@'
thus u, = ’; — as the final solution.

(3) -1




+» SECOND ORDER INHOMOGENEOUS LINEAR DIFFERENCE EQUATION
Tosolvev, =1+ pv,,1 + qV,_1 giventhatvy=0=v;=1andp+q=1
thenpv,, 1 — v, +qv,_1 = -1
Now equation is solved in two steps. First, deem the right hand side to be zero and
n
solve as for the homogeneous case, v,, = A;(1)" + A, (g) providedp + q
then augmented this solution by some f(n) which has to be given further thought:

n
v, =A;(D"+ A, (%) + f(n) this augmented v,, has to be such that when

substituted into pv,,, 1 — v,, + qU,,_1 theresultis -1
Now using f(n) = kn and applying initial conditions we get the general solution

vn=A1+A2(§)n+£

EXAMPLE: Solve the first order equation y,,; = ky; + k? given the initial
conditionyy, =1

SOLUTION: Values are simply found by doing indicated addition and multiplication
thatarey;, =0,y, =1,y3=6,y, = 27,y5 = 124 and so on.

EXAMPLE: Solve the first order equation y;,» — 2y, + ¥, =0

SOLUTION: Here we have a3 = 4a, = 4 theonlyrootof r> — 2r + 1 = O is r=1
this means that u;, = 1 and v, = k are solutions and that y, = ¢; + c;kis a
family of solutions. This is hardly surprising in view of the fact that this difference
equation may be written as A%y, = 0

EXAMPLE: Solve by direct computation the second order initial value problem

Y2 =Yk+1+t ¥k 5 Y0=0 y1=1
SOLUTION: taking k=0,1,2,3 ... ........ We can easily find the successive values
of y, thatare 1, 2, 3,5, 8,13, 21, 34, 55, 89, 144 .........c.cceuuuu.e. which are known as

Fibonacci numbers. The computations clearly show a growing solution but does
not bring out its exact character.



METHODS FOR NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

SINGLE STEP METHODS: A series for ‘y’ in terms of power of ‘x’ form which the value of
‘y’ at a particular value of ‘x’ can be obtained by direct substitution
e.g. Taylor’s, Picard’s, Euler’s, Modified Euler’s Method.

MULTI - STEP METHODS: In multi-step methods, the solution at any point ‘x’ is obtained
using the solution at a number of previous points.
(Predictor- corrector method, Adam’s Moulton Method, Adam’s Bash forth Method)

REMARK

There are some ODE that cannot be solved using the standard methods. In such situations we
apply numerical methods. These methods yield the solutions in one of two forms.

(i) A series for ‘y’ in terms of powers of ‘x’ from which the value of ‘y’ can be obtained
by direct substitution. e.g. Taylor’s and Picard’s method
(ii) A set of tabulated values of ‘x’ and ‘y’. e.g. and Euler’s, Runge Kutta

ADVANTAGE/DISADVANTAGE OF MULTI - STEP METHODS

They are not self-starting. To overcome this problem, the single step method with some order
of accuracy is used to determine the starting values.

Using these methods one step method clears after the first few steps.
LIMITATION (DISADVANTAGE) OF SINGLE STEP METHODS.

For one step method it is typical, for several functions evaluation to be needed.
IMPLICIT METHODS

Method that does not directly give a formula to the new approximation. A need to get it,
need an implicit formula for new approximation in term of known data. These methods also
known as close methods. It is possible to get stable 3" order implicit method.

EXPLICIT METHODS

Methods that not directly give a formula to new approximation and need an explicit formula
for new approximation "y;, " in terms of known data. These are also called open methods.



Most Authorities proclaim that it is not necessary to go to a higher order method. Explain.

Because the increased accuracy is offset by additional computational effort.

If more accuracy is required, then either a smaller step size. OR an adaptive method should
be used.

CONSISTENT METHOD: A multi-step method is consistent if it has order at least one “1”

TAYLOR’S SERIES EXPANSION

Given (x) , smooth function. Expand it at point x = ¢ then

f)=flO)+x—-0of (c) + %f”(c) ot

_~\k
= f(c) = Yo %f" This is called Taylor’s series of ‘f’ at ‘c’

If xo—c=h and f(x)=y then =>c=xy+h

2
y(xo + h) = y(xo) + hy'(xo) + % P (X0) F e e e e
MECLAURIN SERIES FROM TAYLOR’S

If we put ¢ = 0 in Taylor’s series then

F@®) = O +xf O +5 f/ O +5 f70) + e =52y 2 F4(0)
ADVANTAGE OF TAYLOR’S SERIES

(1) One step, Explicit.

(2) Can be high order.

(3) Easy to show that global error is the same as local truncation error.
(4) Applicable to keep the error small.

DISADVANTAGE

Need to explicit form of the derivatives of function. That is why not practical.



ERROR IN TAYLOR’S SERIES

Assume f¥(x) (0 < k < n) are continuous functions. Call

_ "k
fal®) =32, (xk!c) f¥(c) Thenfirst (n + 1) term is Taylor series

Then the error is

(x_c)n+1

Eni1 = f) = ) Siiprs S fHe) = 22 ot ()

(n+1)!

Where ‘§’ is some point between ‘x’ and ‘c’ .
CONVERGENCE

A Taylor’s series converges rapidly if ‘x’ is nears ‘c’ and slowly (or not at all) if ‘X’ is for away
form ‘c’.

EXAMPLE

Obtain numerically the solution of y' = t?> +y? ; y(1) = 0 using Taylor Series method to
find ‘y’ at 1.3

SOLUTION
y =t2+y%.. .. ..(0)
Y =204 2yY e (i) Yy =2[1 4y + YY" (i)
Y"' =20y +3Y' Y] i (V) e e, and so on.

where yo=0and t, =0, h=t—t;=0.3

therefore (i) = y, = 1,(ii) = yg = 2, (iii) = y3' =4, (iv) = Yy = 12, ecececeveceecrereenne

2
Now by using formula y(t, + h) = y(ty) + hy'(t,) + % V') + - e

we get

y(1+0.3) =y(1.3) = 0.4132 as required.



QUESTION: Explain Taylor Series method for solving an initial value problem described by
d o~ s
d—z =f(X,Y); v vie v e (D) With y(xg) = yo

SOLUTION

Here we assume that f(x,y) is sufficiently differentiable with respect to ‘x’ and ‘y’ If y(x) is
exact solution of (i) we can expand by Taylor Series about the point x = x, and obtain

! ( - )2 n
y(x) = y(xq) + (x — x0)y' (x9) + % Y'(xe) +
Since the solution is not known, the derivatives in the above expansion are known explicitly.
However ‘f' is assume to be sufficiently differentiable and therefore the derivatives can be
obtained directly from the given differentiable equation itself. Noting that ‘f’ is an implicit
function of ‘y’ . we have y' = f(x,y)

df of dx of dy

n d A d
=y —a(}’)—af(%}’)—a—a-dx‘l'@-a—fx‘ny-f

=" = (") =0 (F) F o (Fy f) e e (i)
Now —(f) =TT+ T = frot fayf v (@)
d daf  d
—(fy1) = fy.d—£+ .% = fySxF 2+ fFyx ¥ [ fyy oo (B)

Using (a) and (b) in (ii) we get
=y =fxx+fxy-f +fy-fx+ff§l+ffyx+f2fyy
:>ym :fxx+2ffxy +fy-[fx+ffy]+f2fyy "'fxy:fyx

Continuing in this manner we can express any derivative of ‘y’ in term of f(x, y) and its
partial derivatives.



EULER’S METHOD

To find the solution of the given Differential Equation in the form of a recurrence relation
Ym+1 = Ym + Af (tmYm) 1s called Euler Method

FORMULA DERIVATION

Consider the differential Equation of the first order

dy

- f@y) and y(to) = yo

Let (to9, ¥o) and(tq,y,) be two points of approximation curve. Then
Y1 — Yo = m(xqy — Xp) v e (1) (point Slope form)

. dy dy
Given That e fity) = = |(t0.0) = f(tolyo) = m= f(to,yo)

(@) = y1—Y0=f(to,y0)(x1 —x9) = y1 = Yo + (x1 — x0) f (o, ¥0)
Similarly

Y2 =y1+ (X2 —x)f(t1,y1)

Y3 = Y2 + (x3 — x2)f (¢2,52)

Ym+1 =Ym t+ (xm+1 - xm)f(tm: ym)

= VY1 = Vm + Rf (t,,, Ym)  is called Euler Method.

BASE OF EULER’S METHOD

In this method we use the property that in a small interval, a curve is nearly a Straight Line.
Thus at (£5,y9) We approximate the Curve by a tangent at that point.

OBJECT (PURPOSE) OF METHOD

The object of Euler’s Method is to obtain approximations to the well posed initial value

problem %zf(t,y) ;a<t<b;yla)=a



GEOMETRICAL INTERPRETATION

Geometrically, this method has a very simple meaning. The desired function curve is
approximated by a polygon train. Where the direction of each part is determined by the value
of the function f(t, y) at its starting point

Also Y11 = Ym + hf (t,, Y) Shows that the next approximation y,,, 1is obtained at the
point where the tangent to the graph of y(t) at t = t; interest with the vertical linet = t,, ¢

LIMITATION OF EULER METHOD

There is too much inertia in Euler Method. One should not follow the same initial slope over
the whole interval of length “h”.

EULER METHOD IN VECTOR NOTATION

Consider the system % = F(Y) where Y = (x, y),% = (%,%) and F(Y) = (f(x,y),g(x,y))

if we are given the initial condition Yy = (x(, ¥¢) then Euler method approximate a solution

)by  (Xps1,Yik+1) = (Xk, i) + AtF (x, yi)
ADVANTAGE/DISADVANTAGE OF EULER METHOD

The advantage of Euler’s method is that it requires only one slope evaluation and is simple to
apply, especially for discretely sampled (experimental) data points. The disadvantage is that
errors accumulate during successive iterations and the results are not very accurate.

EXAMPLE: Obtain numerically the solution of y' = t? +y? ; y(0) = 0.5 usingsimple
Euler method to find ‘y’ at 0.1

SOLUTION:  y' =t2+y% = f(t,y) where y,=0.5 and t, =0

Then n = % = 0';—;0 = 1 (number of steps) ~h=t—t,

Now by using formula y,,,1 = Ym + hf (t;, ym) we get

y(0.1) = y; = yo + hf (ty,yo) = 0.525 as required.



MODIFIED EULER METHOD

Modified Euler’s Method is given by the iteration formula

Ym+1 == Ym t g [f(tm,ym) + f(tm+1,y1(13-1)]

Method also known as Improved Euler method sometime known as Runge Kutta method of
order 2

CONVERGENCE FOR EULER METHOD

Assume that f (¢, y) has a Lipschitz constant L, for the variable ‘y, and that the solution y; of
the initial value problem y' = f(t,y),t € [a,b],y(a) = y, att;is

Approximated by w; = y(t; ) using Euler Method

Let ‘M’ be an upper bound for |y™(t)| on [a, b] then [w; — y;] < IZ—:‘ (eL(ti_“) — 1)

DARIVATION OF MODIFIED EULER METHOD

Consider the differential Equation of 1°** order d—: = f(t,y)and y(t,) = yo

d
Then by Euler’s Method
y1=Yo + hf(to,y0) “h=1t, -t

h
Y1=Yot; [f (to, ¥0) + f(tp)’gl))]

Y2-Y1 + 2 [f(tl,yl) + f(tz,ygl))]

Ym+1 = Ym T g [f(tm,ym) + f(tm+1,y$3.1)]



EXAMPLE: Obtain numerically the solution of y' =log(t+y) ; y(0) =1 using modified
Euler method to find ‘y’ at 0.2

SOLUTION: Take h = 0.1 (own choice)and ty =0,t; =t, + h=0.1,t, =0.2

Now using Euler’s method ygl) =yo + hf(te,y0) =1

Then by using Euler’s modified method

h 1
Y1=Yot 2 [f(to; Yo) + f(tl,yi ))] =1.002069
Again using Euler’s method ygl) =y, + hf(t;,y1) = 1.006289

Then by using Euler’s modified method

h
Y2 =1 +3|ft,y0) + f(t2,y5”)] = 1.008175 = y, = y(0.2) ~ 1.0082

RUNGE KUTTA METHODS

Basic idea of Runge Kutta Methods can be explained by using Modified Euler’s Method by
Equation y,,,1 =y, + h (average of slopes)

Here we find the slope not only at ‘t,,’ but also at several other interior points and take the
weighted average of these slopes and add to ‘y,, ‘ to get ‘y,,.1’.

ALSO RK-Approach is to aim for the desirable features for the Taylor Series method but with
the replacement of the requirement for the evaluation of the higher order derivatives with
the requirement to evaluate f(x, y) at some points with in the steps 'x;’ to ‘x;,’

IMPORTANCE: Quite Accurate, Stable and easy to program but requires four slopes
evaluation at four different points of (x,y): these slope evaluations are not possible for
discretely sampled data points, because we have is what is given to us and we do not get to
choose at will where to evaluate slopes. These methods do not demand prior computation of
higher derivatives of y(t) as in Taylor Series Method. Easy for automatic Error control. Global
and local errors have same order in it.

DIFFERENCE B/W TAYLOR SERIES AND RK-METHOD

(ADVANTAGE OF RK OVER TAYLOR SERIES)

Taylor Series needs to explicit form of derivative of f (t, y) but in RK-method this is not in
demand. RK-method very extensively used.



SECOND ORDER RUNGE KUTTA METHOD

WORKING RULE: For a given initial value problem of firstorder y' = f(x,y) , vy(x9) = ¥yo
Suppose "X, X1, X2 e ee e " be equally spaced ‘x’ values with interval ‘h’
iie. xy=x9+h , x=x1+h,............

Also denote yg = y(xo), y1=Y(*1), Y2 =Y(X2) covev e e

Thenfor‘n=0,1,2..........." until termination do:

Xni1 = Xpth , ky=hf(xn,yn) 5 In=hf(Xni1, Y0+ kn)

Then Vni1 = Vn + % (k,, + I,,) Is the formula for second order RK-method.
REMARK: Modified Euler Method is a special case of second order RK-Method.

IN ANOTHER WAY: If ky = hf(xy, yi), k; = hf (xp41, Yk + k1)

Then Equation for second order method is y;,1 =y, + % (kq + k3)
This is called Heun’s Method

ANOTHER FORMULA FOR SECOND ORDER RK-METHOD
1 3 3
Yne1 = Yn+3 2Ky +ky) Where ky = hf (tn,ys) . ko =hf (ty+3h, yo+3k; )

LOCAL TRUNCATION ERROR IN RK-METHOD.

LTE in RK-method is the error that arises in each step simply because of the truncated Taylor
series. This error is inevitable. Error of Runge Kutta method of order two involves an error of
o(h3).

In General RK-method of order ‘m’ takes the form x;,; = x; + wiky + wyky, + -+ wy, k.,
Where k1 = h. f(tk, xk) , kz = hf(tk + azh,x + bzkl)
k3 = hf(tk + a3h,x + b3k1 + Cgkz) ........................... km = hf(tk + amh,x + 2:7;—11 Q)i kl)

MULTI STEP METHODS OVER RK-METHOD (PREFRENCE): Determination of y;_
require only on evaluation of f (t,y) per step. Whereas RK-method for n > 3 require four or
more function evaluations. For this reason, multi-step methods can be twice as fast as
RK-method of comparable Accuracy.



EXAMPLE: use second order RK method to solve % = z—iz =f(xy);y0)=1
at x =0.4 and h=0.2

SOLUTION: 2= g = FOOP) e e (D)

If ‘h’ is not given then use by own choice for 4 — step take h=0.1 and for 1 — step take h=0.4
Giventhath=0.2,xy =0,x; =xo+ h=0.2,x, = 0.4

Now using formula of order two

i1 =Yu+32ky+k;) Where ky = hf(xyy) , ky=hf(xy+2h, y,+3k; )
ky = hf(x0,y0) = 0.2, kp=hf(xy+3h,y,+3k; ) =0.32

X — X
=

Forn=0;k; = hf(x0,y0) = 0.2, kp=hf(xo+3h,yo+3k ) =0.32 ' n

n =2 steps

(D) = y1="Yo +§(2k1+k2) =1.24 = y(0.2) = 1.24

Forn=1;k; = hf(x1,y1) = 0.2769, ky=hf(x;+>h,y;+3k; ) =0.3731

(i) = y2 = y1+3 (2k; + k) = 1.54897 = y(0.4) = 1.54897

CLASSICAL RUNGE KUTTA METHOD (RK — METHOD OF ORDER FOUR)

ALORITHM: Given the initial value problem of firstorder y' = f(x,y) , y(x9) = Yo
Suppose "X, X1, X2 .t on o " be equally spaced ‘x’ values with interval ‘h’

i.e. X1 = Xp +h , X2 = X1 +h [T
Also denote yy = y(xg), y1=Y(x1), Y2 =Y(X2) s vs vvvee en .

Thenfor‘n=0,1,2 ..........." until termination do:
h k
Xna1 = Xn+h o, Ky = hfGouYn) kg = hf (%0 + 5,90 +2)
h k
ks = hf (X0 + 5.V +2) ko= hf(y+hy, +ks)
Then Yn+1 = %(k1 + Zkz + 2k3 + k4,) + Yn

Is the formula for Runge Kutta method of order four and its error is "O(hs)"



ADVANTAGE OF METHOD

e Accurate method. o It lakes in estimating the error.
e Easy to compute for the use of e Easy to program and is efficient.
computer.

COMPUTATIONAL COMPARISON: The main computational effort in applying the

Runge Kutta method is the evaluation of ‘f’. In RK — 2 the cost is two function evaluation per
step. In RK — 4 require four evaluations per step.

EXAMPLE: use 4th order RK method to solve % =t+y;y(0) =1fromt=0 to 0.4 takingh=0.4

SOLUTION: Z=t+y o (i)
h= 0.1,t0 = O,tl = to +h =0.1 ) tz = 0.2 ,t3 = 0.3,t4 = 0.4
Now using formulas for the RK method of 4™ order

1 ..
Yn+1 = s ( k1 + 2k2 + 2k3 + k4) T Vn o (ll)

Where ky = hf(tn,¥n) » ko = hf (ta+5, Y0 +2) , ks =hf (tu+5,yn+2) ks = hf(ty+hy, +ks)

STEP | : for n=0;

h k
ky = hf(to,y) = 0.1, ky =hf(to+3,y0+2)=0.11
ks = hf (to +3,50 +2) = 0.1105 ks = hf(ty + b,y + k3) = 0.12105
(if) = y1 = y(0.1) = ¢ (ky + 2ky + 2k + k) + yo = 1.11034

STEP Il : for n=1;

ki = hf(t;,y;) = 0.121034 , k, = hf (t1 +3,y1+2) =0.13208
ks = hf (t,+5,y1+72) = 0.132638  ky = hf(t; + h,y; + ks) = 0.1442978
(i) = y1 = y(0.2) = £ (ky + 2k + 2k + ky) + y; = 1.2428

STEP Il : for n=2;

ky = hf(t,, y,) = 0.14428 , k, = hf (tZ +2.%2 +%) = 0.156494
ks = hf (t; +3,72 +2) = 0.1571047 ks = hf (t, + by, + k3) = 0.16999047

(ii) = y1 = y(0.3) = £ (ky + 2ky + 2k + ky) + ¥, = 1.399711
THIS IS REQUIRED ANSWER



PREDICTOR - CORRECTOR METHODS

A predictor corrector method refers to the use of the predictor equation with one subsequent
application of the corrector equation and the values so obtained are the final solution at the
grid point.

PREDICTOR FORMULA
The explicit (open) formula used to predict approximation "y?, ; "is called a predictor formula.
CORRECTOR FORMULA

The implicit (closed) formula used to determine "y, ;"is called Corrector Formula. This used
to improve "y; 1"

IN GENERAL

Explicit and Implicit formula are used as pair of formulas. The explicit formula is called
‘predictor’ and implicit formula is called ‘corrector’

Implicit methods are often used as ‘corrector’ and Explicit methods are used as ‘predictor’ in
predictor-corrector method. why?

Because the corresponding Local Truncation Error formula is smaller for implicit method on
the other hand the implicit methods has the inherent difficulty that extra processing is
necessary to evaluate implicit part.

REMARK

e Truncation Error of predictor is E,, = %hf;y;f_)l OR %hA‘*y{,

e Local Truncation Error of Adam’s Predictor is %hsy@

. .1
e Truncation Error of Corrector is % hAty,

Why Should one bother using the predictor corrector method When the Single step method
are of the comparable accuracy to the predictor corrector methods are of the same order?

A practical answer to that relies in the actual number of functional evaluations. For example,
RK - Method of order four, each step requires four evaluations where the Adams Moulton
method of the same order requires only as few as two evaluations. For this reason, predictor
corrector formulas are in General considerably more accurate and faster than single step
methods.



REMEMBER

f'Y0, V1, V2 v on e " Are not given against the values of "xq, x4, x5 ... ... ... " then we first find
values of "yg, ¥1,¥Y2 o cee e " by using RK - method
ORByusingformulaVj = 1,2,3 ...... ... n

. /i h) 14 h nr
yji=Yo + (h)yo + ('2! Yo + O ) Yo

BASE (MAIN IDEA) OF PREDICTOR CORRECTOR METHOS
In predictor corrector methods a predictor formula is used to predict the value of ‘y’ at t,,, 1
and then a corrector formula is used to improve the value of y,, ¢
Following are predictor — corrector methods
1. Milne’s Method
2. Adam - Moulton method

MILNE’S METHOD

It’s a multi-step method. In General, Milne’s Predictor — Corrector pair can be written as

P: Yn+1 = Yn-3 + (Zyn 2 y;1—1+2y;1) n=3
C:Yn+1 = Yn-1 +5(yn_1 +4yn + Y1) N3

REMARK: Magnitude of truncation error in Milne’s corrector formula is — h Atyg

and truncation error in Milne’s predictor formula i |s — h Atyg

stable, convergent, efficient, accurate, compeer frlendly.

ALGORITHM
e First predict the value of y,,, ; by above predictor formula.
Where derivatives are computed using the given differential equation itself.
e Using the predicted value "y, ., " we calculate the derivative y, . ,from the given
differential Equation.
e Then use the corrector formula given above for corrected value of y,,, 1 . Repeat this
process.



EXAMPLE: use Milne’s method to solve % =1+y? ;y(0) =0 and compute y(0.8)

SOLUTION: h=0.2,x=0,x;=x9g+h=0.2 , x,=0.4 ,x3=0.6 also y,=0

Now by using Euler’s method = y,,.1 = Ym + bf (&, Vi)
form=0; =y, =y¢+hf(tyye) =0.2=1y(0.2)
form=1 =y,=y,+hf(t;,y1) =0.48 =y(0.4)
form=2; =y3=1y,+hf(t;,y2) =0.73 = y(0.6)

Now yn=1+y2

Forn=1=y; =1+y%=1.04
Forn=2=y,=1+y%=1.16
Forn=3=y; =1+y3=1.36

Now using Milne’s Predictor formula

4h Vi ! !
P:¥ni1 =Yn-3 + 5 (2Yn-2 —Yn-1t2yn) n=3

4'h ! ! ! !
Ve =Yo +5 (2¥1—¥y2 +2y3) =0.98 =y, =1+y;=19604
Now using corrector formula
h ! ! !
C:Vn+1 = Yn-1 +§(yn—1+4yn+yn+1) n=3
h ! ! !
Ya =¥z +3 (2 +4y3+y,) = 1.05=y(0.8)



