CHAPTER 6

COMPACTNESS

INTRODUCTION

We have seen that the concept of completeness is the abstraction of a property of the real number system. The concept of compactness is also an abstraction of an important property possessed by subsets of R which are closed and bounded. This property is known as Heine Borel theorem which states that if $I \subseteq \mathbb{R}$ is a closed interval, any family of open intervals in \mathbb{R} whose union contains I has a finite subfamily whose union contains I. We now introduce the class of compact metric spaces in which the conclusion of Heine Borel theorem is valid.

COMPACT METRIC SPACES

Definition. Let M be a metric space. A family of open sets $\{G_{\alpha}\}$ in M is called an open cover for M if $\bigcup G_{\alpha} = M$.

A subfamily of $\{G_{\alpha}\}$ which itself is an open cover is called a subcover.

A metric space M is said to be compact if every open cover for M has finite subcover.

(i.e) for each family of open sets $\{G_{\alpha}\}$ such that $\bigcup G_{\alpha} = M$, there

exist a finite subfamily $\{G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}\}$ such that $\bigcup_{\alpha_i = M} G_{\alpha_i} = M$.

Example 1. R with usual metric is not compact.

Proof. Consider the family of open intervals $\{(-n, n)/n \in \mathbb{N}\}.$ This is a family of open sets in R.

Clearly
$$\bigcup_{n=1}^{\infty} (-n, n) = \mathbb{R}$$
.

 $\therefore \{(-n, n)/n \in \mathbb{N}\}$ is an open cover for R and this open cover has no finite subcover.

.. R is not compact.

Example 2. (0, 1) with usual metric is not compact.

Proof. Consider the family of open intervals $\left\{ \left(\frac{1}{n}, 1\right) / n = 2, 3, \right\}$

Clearly
$$\bigcup_{n=2}^{\infty} \left(\frac{1}{n}, 1\right) = (0, 1).$$

 $\therefore \left\{ \left(\frac{1}{n}, 1\right) / n = 2, 3, \dots \right\} \text{ is an open cover for } (0, 1) \text{ and this open}$

cover has no finite subcover.

Hence (0, 1) is not compact.

Example 3. $[0, \infty)$ with usual metric is not compact.

Proof. Consider the family of intervals $\{[0, n)/n \in \mathbb{N}\}$.

[0, n) is open in $[0, \infty)$ for each $n \in \mathbb{N}$.

Also
$$\bigcup_{n=1}^{\infty} .[0, n) = [0, \infty).$$

 \therefore {[0, n)/n \in N} is an open cover for [0, ∞) and this open cover has no finite subcover.

Hence $[0, \infty)$ is not compact.

Example 4. Let M be an infinite set with discrete metric. Then M is not compact.

Proof. Let $x \in M$. Since M is a discrete metric space $\{x\}$ is open in M.

Also
$$\bigcup_{x \in M} \{x\} = M$$
.

Q,

Hence $\{\{x\}/x \in M\}$ is an open cover for M and since M is infinite, this open cover has no finite subcover.

Hence M is not compact.

pample 5. We will prove in 6.2 that any closed interval [a, b] with usual metric is compact.

Theorem 6.1 Let M be a metric space. Let $A \subseteq M$. A is compact iff given a family of open sets $\{G_{\alpha}\}$ in M such that $\bigcup G_{\alpha} \supseteq A$ there exists a subfamily

$$G_{\alpha_1}$$
, G_{α_2} ,, G_{α_n} such that $\bigcup_{i=1}^n G_{\alpha_i} \supseteq A$.

Proof. Let A be a compact subset of M.

Let $\{G_{\alpha}\}$ be a family of open sets in M such that $\bigcup G_{\alpha} \supseteq A$.

Then
$$(\bigcup G_{\alpha}) \cap A = A$$
.

$$\therefore \cup (G_{\alpha} \cap A) = A.$$

Also $G_{\alpha} \cap A$ is open in A. (refer theorem 2.6)

 \therefore The family $\{G_{\alpha} \cap A\}$ is an open cover for A.

Since A is compact this open cover has a finite subcover, say, $G_{\alpha_1} \cap A$, $G_{\alpha_2} \cap A$,, $G_{\alpha_n} \cap A$.

$$\therefore \bigcup_{i=1}^{n} (G_{\alpha_i} \cap A) = A.$$

$$\therefore \left(\bigcup_{i=1}^n G_{\alpha_i}\right) \cap A = A.$$

$$\therefore \bigcup_{i=1}^{n} G_{\alpha_i} \supseteq A.$$

Conversely let $\{H_{\alpha}\}$ be an open cover for A.

 \therefore Each H_{α} is open in A.

 $\therefore H_{\alpha} = G_{\alpha} \cap A \text{ where } G_{\alpha} \text{ is open in } M.$

Now, $\bigcup H_{\alpha} = A$.

$$\therefore \cup (G_{\alpha} \cap A) = A.$$

$$\therefore (\cup G_{\alpha}) \cap A = A$$

$$\therefore \cup G_{\alpha} \supseteq A.$$

Hence by hypothesis there exists a finite subfamily

$$G_{\alpha_1}$$
, G_{α_2} ,, G_{α_n} such that $\bigcup_{i=1}^n G_{\alpha_i} \supseteq A$.

$$\therefore \left(\bigcup_{i=1}^n G_{\alpha_i}\right) \cap A = A.$$

$$\therefore \bigcup_{i=1}^{n} (G_{\alpha_i} \cap A) = A.$$

$$\therefore \bigcup_{i=1}^n H_{\alpha_i} = A.$$

Thus $\{H_{\alpha_1}, H_{\alpha_2}, \dots, H_{\alpha_n}\}$ is a finite subover of the open cover $\{H_{\alpha}\}$

 \therefore A is compact.

Theorem 6.2 Any compact subset A of a meetric space M is bounded.

Proof. Let $x_o \in A$.

Consider $\{B(x_o, n)/n \in \mathbb{N}\}.$

Clearly $\bigcup_{n=1}^{\infty} B(x_o, n) = M$.

$$\therefore \bigcup_{n=1}^{\infty} B(x_o, n) \supseteq A.$$

Since A is compact there exists a finite subfamily say,

a

101

Z

 $B(x_0, n_1)$, $B(x_0, n_2)$,, $B(x_0, n_k)$ such that $\bigcup B(x_0, n_1) \supseteq A$.

Let $n_o = \max\{n_1, n_2, ..., n_k\}.$

Then $\bigcup B(x_o, n_i) = B(x_o, n_0)$.

 $\therefore B(x_0, n_0) \supseteq A.$

We know that $B(x_o, n_o)$ is a bounded set and a subset of a bounded set is bounded. Hence A is bounded.

Note. The converse of the above theorem is not true.

For example, (0, 1) is a bounded subset of R.

But it is not compact. (refer example 2 of 6.1)

Theorem 6.3 Any compact subset A of a metric space (M, d) is closed.

Proof. To prove that A is closed we shall prove that A^c is open. $A^c \cap C$

Let $y \in A^c$ and let $x \in A$. Then $x \neq y$.

 $d(x, y) = r_r > 0.$

It can be easily verified that $B(x, \frac{1}{2}r_x) \cap B(y, \frac{1}{2}r_x) = \Phi$.

Now consider the collection $\{B(x, \frac{1}{2}r_x)/x \in A\}$. Clearly $\bigcup_{x \in A} B(x, \frac{1}{2}r_x) \supseteq A$.

Since A is compact there exists a finite number of such open balls say,

 $B(x_1, \frac{1}{2}r_{x_1}), \dots, B(x_n, \frac{1}{2}r_{x_n})$ such that $\bigcup B(x_i, \frac{1}{2}r_{x_i}) \supseteq A$.

Now, let $V_y = \bigcap B(y, \frac{1}{2}r_{x_i})$.

atleast 4 matur

Clearly V_{y} is an open set containing y.

Since $B(y, \frac{1}{2}r_y) \cap B(x, \frac{1}{2}r_x) = \Phi$, we have $V_y \cap B(x, \frac{1}{2}r_x) = \Phi$ for

each i = 1, 2, ..., n. $\sqrt{y} \cap (U \otimes (x, x)) = 6 G(y, x)$

$$\therefore V_y \cap \left[\bigcup_{i=1}^n B(x, \frac{1}{2}r_{x_i})\right] = \Phi.$$

 $\therefore V_v \cap A = \Phi \quad [by (1)].$

 $: V_{\nu} \subseteq A^{c}$

 $\therefore \bigcup V_y = A^c$ and each V_y is open.

 $\therefore A^c$ is open. Hence A is closed.

Note 1. The converse of the above theorem is not true.

For example, $[0, \infty)$ is a closed subset of R. But it is not compact (refer eg. 3 of 6.1)

Note 2. It follows from theorems 6.2 and 6.3 that any compact subset of a metric space is closed and bounded.

Theorem 6.4 A closed subspace of a compact metric space is compact.

Proof. Let M be a compact metric space. Let A be a non-empty closed subset of M.

We claim that A is compact.

Let $\{G_{\alpha}/\alpha \in I\}$ be a family of open sets in M such that

 $\bigcup_{\alpha \in I} G_{\alpha} \supseteq A.$

COMPACT SUBSETS OF R
$$\therefore A^c \cup \left[\bigcup G_{\alpha} \right] = M.$$

Also A^c is open. (since A is closed).

 $\therefore \{G_{\alpha}/\alpha \in I\} \cup \{A^c\} \text{ is an open cover for } M.$

Since M is compact it has a finite subcover say

$$G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}, A^c.$$

$$\left(\bigcup_{i=1}^n G_{\alpha_i}\right) \cup A^c = M.$$

$$\therefore \left(\bigcup_{i=1}^n G_{\alpha_i}\right) \cup A^c = M.$$

$$\therefore \bigcup_{i=1}^{n} G_{\alpha_i} \supseteq A.$$

: A is compact.

Exercises

t. Cral 1. Give an example of an open cover which has no finite subcover for the following subsets of R.

 $\int_{\mathbb{R}^{3}} \left(i\right) \left(5,6\right) \left(i\right) \left(5,\infty\right) \left(iii\right) \left[5,\infty\right) \left(iv\right) \left[7,9\right)$

- 2. Show that every finite metric space is compact.
- 3. Give an example of a connected subset of R which is not compact. (Hint. Any interval in R is connected) (6 (1)
- 4. A and B are two compact subsets of a metric space M. Prove that $A \cup B$ is also compact.

COMPACT SUBSETS OF R.

We have already proved that every compact subset of a metric space is closed and bounded.

nE

a

Z

6 of

de

me

nar

```
or - non empty
                                                Na - C= 6 COMPACTNESS
                 158
                                       However the converse is not true.
                                       For example, consider an infinite discrete metric space (M, d).
                                        Let A be an infinite subset of M.
                                         Then A is bounded since d(x, y) \le 1 for all x, y \in A.
                                          Also A is closed since any subset of a discrete metric space is
     closed.
                                          Hence A is closed and bounded.
                                           However A is not compact (refer example 4 of 6.1)
                                            In this section we shall prove that for R with usual metric the
      converse is also true.
      Theorem 6.5 (Heine Borel theorem) & 8 m Tmf
                    Any closed interval [a, b] is a compact subset of R.
          \bigcup G_{\alpha} \supseteq [a,b]. Let a cover parmun [a,b], where [a,b]
Proof. Let \{G_{\alpha}/\alpha \in I\} be a family of open sets in R such that
                                                                         (a=n)=b
         Let S = \{x/x \in [a, b] \text{ and } [a], x\} can be covered by a finite number of G_{\alpha}'s.
                                                Clearly a \in S and hence S \neq \Phi.
                                                Also S is bounded above by b.
                                                                                                                                                                                             cover in lais
                                                Let c denote the l. u.b. of S.
                                                 Clearly c = [a, b]. Con fring Cond
                                                                                                                                                                                                   wver in 1
                                                   \therefore c \in G_{\alpha_1} \text{ for some } \alpha_1 \in I.
                                                  Since G_{\alpha_1} is open, there exists \varepsilon > 0 such that
                                                                                                       B(C, \mathcal{E}) \subseteq \mathcal{G}_{\alpha_1}, \quad (c-\varepsilon, c+\varepsilon) \subseteq \mathcal{G}_{\alpha_1}.
                                                  (C-\mathcal{E}, C+\mathcal{E})
(C-\mathcal{E}, C+
                                Now, since x_1 < c, [a, x_1] can be covered by a finite number of G_{\alpha}'s.
```

159 [x,, c], [a, x]

These finite number of G_{α} 's together with G_{α_1} covers [a, c].

 \therefore By definition of S, $c \in S$.

61 m. 1

Now, we claim that c = b.

Then choose $x_2 \in [a, b]$ such that $x_2 > c$ and $[c, x_2] \subseteq G_{\alpha_1}$. $c \in C_{\alpha_2}$ As before, $[a, r_1]$ can be seen. As before, $[a, x_2]$ can be covered by a finite number of G_{α} 's.

Hence $x_2 \in S$.

But $x_2 > c$ which is a contradiction, since c is the l. u. b. of S.

 $\therefore c = b.$

 \therefore [a, b] can be covered by a finite number of G_{α} 's.

 \therefore [a, b] is a compact subset of **R**.

Theorem 6.6 A subset A of R is compact iff A is closed and bounded.

Proof. If A is compact then A is closed and bounded.

Conversely, let A be subset of R which is closed and-bounded.

Since A is bounded we can find a closed interval [a, b] such that $A \subseteq [a, b].$

Since A is closed in \mathbb{R} , A is closed in [a, b] also.

Thus A is a closed subset of the compact space [a, b].

Hence A is compact. (by theorem 6.4)

Exercises

- 1. Determine which of the following subset of R are comapct.
 - (i) **Z**

- (iv) (3, 4) (v) $(0, \infty)$
- (vi) $[1, 2] \cup [3, 4]$

(vii) $[1, 3] \cap [3, 4]$ (viii) $\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$

2./If A and B are compact subsets of R prove that $A \cap B$ is also a compact subset of R. AUR

6.3 EQUIVALENT CHARACTERISATIONS FOR COMPACTNESS

In this section we obtain several equivalent characterisation for compactness in a metric space.

Script 1. Definition. A family \mathfrak{S} of subsets of a set M is said to have the finite intersection property if any finite members of 3 have non-empty intersection

Example. In R the family of closed intervals $\Im = \{[-n, n]/n \in \mathbb{N}\}$ has finite intersection property.

Theorem 6.7 A metric space M is compact iff any family of closed sets with finite intersection property has non-empty intersection.

Proof. Suppose M is compact.

Let $\{A_{\alpha}\}\$ be a family of closed subsets of M with finite intersection property.

We claim that $\bigcap A_{\alpha} \neq \Phi$.

Suppose $\bigcap A_{\alpha} = \Phi$ then $(\bigcap A_{\alpha})^{c} = \Phi^{c}$.

 $\therefore \cup A_{\alpha}^{c} = M.$

Also, since each A_{α} is closed, A_{α}^{c} is open.

 A_{α}^{c} is an open cover for M.

Since M is compact this open cover has a finite subcover say,

$$A_1^c, A_2^c, \dots, A_n^c$$

$$\therefore \bigcup_{i=1}^{n} A_i^c = M.$$

$$\therefore \left(\bigcap_{i=1}^n A_i\right)^c = M.$$

 $\therefore \bigcap_{i=1}^{n} A_i = \Phi \text{ which is a contradiction to the finite intersection}$

property.

$$A_{\alpha} \neq \Phi$$
.

Conversely, suppose that each family of closed sets in M with finite intersection property has non empty intersection.

To prove that M is compact, let $\{G_{\alpha}/\alpha \in I\}$ be an open cover for M.

$$\therefore \bigcup_{\alpha \in I} G_{\alpha} = M.$$

$$\therefore \left(\bigcup_{\alpha \in I} G_{\alpha}\right)^{c} = M^{c}.$$

$$\therefore \bigcap_{\alpha \in I} G_{\alpha}^{c} = \Phi.$$

Since G_{α} is open, G_{α}^{c} is closed for each α .

 $\therefore \mathfrak{F} = \{G_{\alpha}^{c}/\alpha \in I\} \text{ is a family of closed sets whose intersection is empty.}$

Hence by hypothesis this family of closed sets does not have the finite intersection property.

Hence there exists a finite sub-collection of 3 say,

$$\{G_1^c, G_2^c, \dots, G_n^c\}$$
 such that $\bigcap_{i=1}^n G_i^c = \Phi$.

$$\therefore \left(\bigcup_{i=1}^{n} G_{i}\right)^{e} = \Phi.$$

$$\therefore \left(\bigcup_{i=1}^{n} G_{i} = M.\right)$$

: $\{G_1, G_2, \dots, G_n\}$ is a finite subcover of the given open

cover.

Hence M is compact.

Definition. A metric space M is said to be totally bounded if for every $\varepsilon > 0$ there exists a finite number of elements $x_1, x_2, \dots, x_n \in M$ such that $B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \dots \cup B(x_n, \varepsilon) = M.$

A non-empty subset A of a metric space M is said to be totally bounded if the subspace A is a totally bounded metric space.

Theorem 6.8 Any compact metric space is totally bounded.

Proof. Let M be a compact metric space.

Then $\{B(x, \varepsilon)/x \in M\}$ is an open cover for M.

Since M is compact this open cover has a finite subcover say, $B(x_1, \varepsilon), B(x_2, \varepsilon), \dots, B(x_n, \varepsilon).$

$$\therefore M = B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \dots \cup (B(x_n, \varepsilon).$$

:. M is totally bounded.

Theorem 6.9 Let A be a subset of a metric space M. If A is totally bounded then A is bounded.

Proof. Let A be a totally bounded subset of M. Let $\varepsilon > 0$ be given. Then there exists a finite number of points $x_1, x_2, \dots, x_n \in A$, such that $B_1(x_1, \varepsilon) \cup B_1(x_2, \varepsilon) \cup ... \cup B_1(x_n, \varepsilon) = A$, where $B_1(x_i, \varepsilon)$ is an open Further we know that an open ball is a bounded set.

Thus A is the union of a finite number of bounded sets and hence A is bounded.

Note. The converse of the above theorem is not true.

For, let M be an infinite set with discrete metric.

Clearly M is bounded.

Now,
$$B(x, \frac{1}{2}) = \{x\}.$$

Since M is infinite, M cannot be written as the union of a finite number of open balls $B(x, \frac{1}{2})$.

.. M is not totally bounded.

Definition. Let (x_n) be sequence in a metric space M.

Let $n_1 < n_2 < \dots < n_k < \dots$ be an increasing sequence of positive integers. Then (x_{n_k}) is called a subsequence of (x_n) .

Theorem 6.10 A metric space (M, d) is totally bounded iff every sequence in M has a Cauchy subsequence.

Proof. Suppose every sequence in M has a Cauchy subsequence.

We claim that M is totally bounded.

Let $\varepsilon > 0$ be given. Choose $x_1 \in M$.

If $B(x_1, \varepsilon) = M$ then obviously M is totally bounded.

If $B(x_1, \varepsilon) \neq M$, choose $x_2 \in M - B(x_1, \varepsilon)$ so that $d(x_1, x_2) \geq \varepsilon$.

Now, if $B(x_1, \varepsilon) \cup (Bx_2, \varepsilon) = M$ the proof is complete.

If not choose $x_3 = M - [B(x_1, \varepsilon) \cup B(x_2, \varepsilon)]$ and so on.

Suppose this process does not stop at a finite stage.

Then we obtain a sequence $x_1, x_2, \dots, x_n, \dots$ such that $d(x_n, x_m) \ge \varepsilon \text{ if } n \ne m.$

Clearly this sequence (x_n) cannot have a Cauchy subsequence which is a contradiction.

Hence the above process stops at a finite stage and we get a finite set of points $\{x_1, x_2, \dots, x_n\}$ such that

 $M = B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \dots \cup B(x_n, \varepsilon).$

... M is totally bounded.

Conversely suppose M is totally bounded.

Let $S_1 = \{x_{i_1}, x_{i_2}, \dots, x_{i_n}, \dots \}$ be a sequence in M.

If one term of the sequence is infinitely repeated then S_1 contains a constant subsequence which is obviously a Cauchy subsequence.)

Hence we assume that no term of S_1 is infinitely repeated so that the range of S is infinite.

> Now, since M is totally bounded M can be covered by a finite number of open balls of radius $\frac{1}{2}$.

Hence atleast one of these balls must contain an infinite number of terms of the sequence S_1 .

 $\therefore S_1 \text{ contains a subsequence } S_2 = (x_{2_1}, x_{2_2}, \dots, x_{2_n}, \dots) \text{ all }$ terms of which lie within an open ball of radius $\frac{1}{2}$.

Similarly S_2 contains a sub sequence $S_3 = (x_{3_1}, \dots, x_{3_n}, \dots)$ all terms of which lie within an open ball of radius $\frac{1}{3}$.

We repeat this process of forming successive subsequences and finally we take the diagonal sequence.

$$S = (x_{1_1}, x_{2_2}, \dots, x_{n_n}, \dots)$$
.

We claim that S is a Cauchy subsequence of S_1 .

If m > n both x_{m_m} and x_{n_n} lie within an open ball of radius $\frac{1}{n}$.

$$\therefore d(x_{m_m}, x_{n_n}) < \frac{2}{n}.$$

Hence $d(x_{m_m}, x_{n_n}) < \varepsilon$ if $n, m > \frac{2}{\varepsilon}$.

This shows that S is a Cauchy subsequence of S_1 .

Thus every sequence in M contains a Cauchy subsequence.

Corollary. A non-empty subset of a totally bounded set is totally bounded.

Proof. Let A be a totally bounded subset of a metric space M.

Let B be a non-empty subset of A.

Let (x_n) be a sequence in B.

 \therefore (x_n) is a sequence in A.

Since A is totally bounded (x_n) has a Cauchy subsequence. (Thrm: 6.10)

Thus every sequence in B has a Cauchy subsequence.

 \therefore B is totally bounded.

all help over country

Definition. A metric space M is said to be sequentially compact if every sequence in M has a convergent sub-sequence.

Theorem 6.11. Let (x_n) be a Cauchy sequence in a metric space M. If

has a subsequence (x_{n_k}) converging to x, then (x_n) converges to x.

Proof. Let $\varepsilon > 0$ be given. Since (x_n) is a Cauchy sequence, there exists a

positive integer m_1 such that $d(x_n, x_m) < \frac{1}{2}\varepsilon$ for all $n, m \ge m_1$ (1)

10

dni

cean

Z

de

me

har

1

ca

Also, since $(x_{n_k}) \to x$, there exists a positive integer m_2 such that $(x_n, y_n) \gamma (d(x_{n_k}, x) < \frac{1}{2}\varepsilon \text{ for all } p_k \ge m_2$ (2) Let $m_0 = \max\{m_1, m_2\}$ and $\max\{m_1, m_2\}$

$$<\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
 for all $n \ge m_o$ [by (1) and (2)]

= ε for all $n \ge m_o$.

Hence $(x_n) \to x$.

Theorem 6.12 In a metric space M the following are equivalent.

- (i) M is compact.
- (ii) Any infinite subset of M has a limit point.
- (iii) M is sequentially compact.
- (iv) M is totally bounded and complete.

Proof. (i) \Rightarrow (ii)

Let A be an infinite subset of M.

Suppose A has no limit point in M.

Let $x \in M$.

Since x is not a limit point of A there exists an open ball $B(x,r_x)$

such that $B(x, r_x) \cap (A - \{x\}) = \Phi$.

 $\exists B(x, r_x) \cap A = \begin{cases} \{x\} & \text{if } x \in A \\ \Phi & \text{if } x \notin A \text{ in Compact} \end{cases}$

Now, $\{B(x, r_x)/x \in M\}$ is open cover for M.

Also each $B(x, r_x)$ covers at most one point of the infinite set A.

Hence this open cover cannot have a finite sub cover which is a contradiction to (i). Hence A has atleast one limit point.

(ii) ⇒ (iii).

Let (x_n) be a sequence in M.

(If one term of the sequence is infinitely repeated then (x_n) contains a constant subsequence which is convergent.)

Otherwise (x_n) has an infinite number of terms. (11)

By hypothesis this infinite set has a limit point, say x.

By theorem 2.15 for any r > 0 the open ball B(x, r) contains infinite number of terms of the sequence (x_n) .

Now, choose a positive integer n, such that $x_{n_1} \in B(x, 1)$.

Then choose $n_2 > n_1$ such that $x_{n_2} \in B(x, \frac{1}{2})$.

In general for each positive integer k choose n_k such that $n_k > n_{k-1}$ and $x_{n_k} \in B(x, \frac{1}{k})$.

Clearly (x_{n_k}) is a subsequence of (x_n) .

Also $d(x_{n_k}, x) < \frac{1}{k}$.

 $\therefore (x_{n_k}) \to x.$

Thus (x_{n_k}) is a convergent subsequence of (x_n) .

Hence M is sequentially compact.

 $(iii) \Rightarrow (iv)$

By hypothesis every sequence in M has a convergent subsequence. But every convergent sequence is a Cauchy sequence.

Thus every sequence in M has a Cauchy subsequence.

 \therefore By theorem 6.10, M is totally bounded.

Now we prove that M is complete.

Let (x_n) be a Cauchy sequence in M.

By hypothesis (x_n) contains a convergent subsequence (x_{n_i}) .

Let
$$(x_{n_k}) \rightarrow x$$
. (say)

Then by theorem 6.11, $(x_n) \rightarrow x$.

 \therefore M is complete.

$$(iv) \Rightarrow (i)$$

Suppose M is not compact.

Then there exists an open cover $\{G_{\alpha}\}$ for M which has no finite subcover.

Let
$$r_n = \frac{1}{2^n}$$
.

Since, M is totally bounced, M can be covered by a finite number of open balls of radius r_1 .

Mit which Since M cannot be covered by a finite number of G_{α} 's at least one of these open balls, say $B(x_1, r_1)$ cannot be covered by a finite number of G_{α} 's

Now, $B(x_1, r_1)$ is totally bounded.

Hence as before we can find $x_2 \in B(x_1, r_1)$ such that $B(x_2, r_2)$ cannot be covered by a finite number of G_{α} 's.

Proceeding like this we obtain a sequence (x_n) in M such that $B(x_n, r_n)$ cannot be covered by a finite number of G_{α} 's and

$$x_{n+1} \in B(x_n, r_n)$$
 for all n .

Now,
$$d(x_n, x_{n+p}) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

 $< r_n + r_{n+1} + \dots + r_{n+p-1}$

$$= \frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+p-1}}$$

$$= \frac{1}{2^{n-1}} \left(\frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{p}} \right)$$

$$< \frac{1}{2^{n-1}}.$$

 \therefore (x_n) is a Cauchy sequence in M_{\bullet}

Since M is complete there exists $x \in M$ such that $(x_n) \to x$.

Now, $x \in G_{\alpha}$ for some α .

Since G_{α} is open we can find $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq G_{\alpha}$ (1)

We have $(x_n) \to x$ and $(r_n) = \left(\frac{1}{2^n}\right) \to 0$.

Hence we can find a positive integer n_1 such that $d(x_n, x) < \frac{1}{2} \varepsilon$

and $r_n < \frac{1}{2} \varepsilon$ for all $n \ge n_1$.

Now, fix $n \ge n_1$.

We claim that $B(x_n, r_n) \subseteq B(x, \varepsilon)$.

Let $y \in B(x_n, r_n)$

$$\therefore d(y, x_n) < r_n < \frac{1}{2} \varepsilon \quad \text{(since } n \ge n_1\text{)}$$

Now, $d(y, x) \le d(y, x_n) + d(x_n, x)$

$$<\frac{1}{2}\varepsilon+\frac{1}{2}\varepsilon=\varepsilon.$$

$$\therefore y \in B(x, \varepsilon).$$

$$\therefore B(x_n, r_n) \subseteq B(x, \varepsilon) \subseteq G_{\alpha} \quad (by (1))$$

Thus $B(x_n, r_n)$ is covered by the single set G_{α} which is a contradiction since $B(x_n, r_n)$ cannot be covered by a finite number of G_{α} 's. Hence M is compact.

Theorem 6.13. R with usual metric is complete.

Proof. Let (x_n) be a Cauchy sequence in \mathbb{R} .

interval Thrm

Then (x_n) is a bounded sequence and hence is contained in a closed interval [a, b].

Now, [a, b] is compact and hence is complete.

Hence (x_n) converges to some point $x \in [a, b]$.

Thus every Cauchy sequence (x_n) in R converges to some point x in R and hence R is complete.

Solved problems

A. A

Problem 1. Give an example of a closed and bounded subset of l_2 which is not compact.

Solution. Consider $0 = (0, 0, 0,) \in l_2$.

Consider the closed ball B[0, 1].

Clearly, B[0, 1] is bounded.

Also, B[0,1] is a closed set. (Since Not ball)

We claim that B[0, 1] is not compact.

Consider $e_1 = (1, 0, 0, ...); e_2 = (0, 1, 0,);$

......
$$e_n = (0, 0, 0,, 1, 0,)$$
.

Now, $d(\mathbf{0}, e_n) = 1$ and hence $e_n \in B[0, 1]$ for all n.

Thus (e_n) is a sequence in B[0, 1].

ys 12 171 de et co

EQUIVALENT CHARECTERISATIONS

Also $d(e_n, e_m) = \sqrt{2}$ if $n \neq m$.

Hence the sequence (e_n) does not contain a Cauchy subsequence.

- $\therefore B[0,1]$ is not totally bounded.
- $\therefore B[0,1]$ is not compact.

Mis totally bounded Miscompa etric space is separable.

Problem 2. Prove that any totally bounded metric space is separable.

iolution. Let M be a totally bounded metric space.

For each natural number n let $A_n = \{x_{n_1}, x_{n_2}, \dots, x_{n_k}\}$ be a $n \in \mathbb{N}$

subset of M such that $\bigcup_{i=1}^{n} B(x_{n_i}, \frac{1}{n}) = M$.

Let
$$A = \bigcup_{n=1}^{\infty} A_n$$
.

Since each A_n is finite, A is a countable subset of M.

We claim that A is dense in M.

Let $B(x, \varepsilon)$ be any open ball.

Choose a natural number n such that $\frac{1}{n} < \varepsilon$.

Now, $x \in B(x_{n_i}, \frac{1}{n})$ for some i. (by (1)).

- $\therefore ((x_n) \in B(x, \varepsilon).$
- $B(x, \varepsilon) \cap A \neq \Phi$.

 $\therefore d(x_{n_i}, x) < \frac{1}{n} < \varepsilon. \qquad A = \int \mathcal{M}_{n_i} dx$

Thus every open ball in M has non-empty intersection with A. Hence by theorem 2.17, A is dense in M.

Thus A is a countable dense subset of M.

Hence M is separable.

Problem 3. Prove that any bounded sequence in R has a convergent subsequence.

Solution. Let (x_n) be a bounded sequence in R.

Then there exists a closed interval [a, b] such that $x_n \in [a, b]$ for all n.

Thus (x_n) is a sequence in the compact metric space [a, b].

Hence by theorem 6.12, (x_n) has a convergent sub-sequence.

Problem 4. Prove that the closure of a totally bounded set is totally bounded.

Solution. Let A be a totally bounded subset of a metric space M.

We claim that \overline{A} is totally bounded.

We shall show that every sequence in \overline{A} contains a Cauchy subsequence.

Let (x_n) be a sequence in \overline{A} .

Let $\varepsilon > 0$ be given.

Then since $x_n \in \overline{A}$, $B(x_n, \frac{1}{3}\varepsilon) \cap A \neq \Phi$.

Choose $y_n \in B(x_n, \frac{1}{3}\varepsilon) \cap A$.

$$\therefore \ \underline{d(y_n, x_n) < \frac{1}{3} \varepsilon}. \qquad \qquad \dots (1)$$

Nov', (y_n) is a sequence in A. Since A is totally bounded (y_n) contains a Cauchy sequence say (y_{n_k}) .

Hence there exists a natural number m such that

$$\int_{0}^{\infty} d(y_{n_{i}}, y_{n_{j}}) < \frac{1}{3} \varepsilon \text{ for all } n_{i}, n_{j} \ge m \qquad (2)$$

$$\therefore \ d(x_{n_i}, x_{n_j}) \leq d(x_{n_i}, y_{n_i}) + d(y_{n_i}, y_{n_j}) + d(y_{n_j}, x_{n_j})$$

$$<\frac{1}{3}\varepsilon+\frac{1}{3}\varepsilon+\frac{1}{3}\varepsilon=\varepsilon \text{ for all } n_i, n_j \ge m. \text{ (by (1) and (2))}$$

Hence (x_{n_k}) is a Cauchy subsequence of (x_n) .

 $\therefore \overline{A}$ is totally bounded.

Problem 5. Let A be a totally bounded subset of R. Prove that \overline{A} is compact.

Solution. Since A is totally bounded \overline{A} is also totally bounded.

VV=

Also, since \overline{A} is a closed subset of \mathbb{R} and \mathbb{R} is complete \overline{A} is complete.

(refer theorem 3.4) page

Hence \overline{A} is totally bounded and complete.

 $\therefore \overline{A}$ is compact. (refer theorem 6.12)

Exercises

6.4 COMPACTNESS AND CONTINUITY

In this section we prove some results about continuous functions defined on a compact metric space. These are generalizations of the corresponding results for continuous real valued functions defined on any closed interval [a, b].

Theorem 6.14. Let f be a continuous mapping from a compact metric space M_1 to any metric space M_2 . Then $f(M_1)$ is compact.

(i.e.,) Continuous image of a compact metric space is compact.

Proof. Without loss of generality we assume that $f(M_1) = M_2$.

Let $\{G_{\alpha}\}$ be a family of open sets in M_2 such that $\bigcup G_{\alpha} = M_2$.

$$\therefore \cup G_{\alpha} = f(M_1)$$

$$\therefore f^{-1}(\cup G_{\alpha}) = M_1.$$

$$\therefore \cup f^{-1}(G_{\alpha}) = M_1.$$

Also since f is continuous $f^{-1}(G_{\alpha})$ is open in M_1 for each α .

$$\therefore \{f^{-1}(G_{\alpha})\} \text{ is an open cover for } M_1.$$

Since M_1 is compact this open cover has a finite subcover, say,

$$f^{-1}(G_{\alpha_1}), \ldots, f^{-1}(G_{\alpha_n}).$$

$$\therefore f^{-1}(G_{\alpha_1}) \cup f^{-1}(G_{\alpha_2}) \cup \dots \cup f^{-1}(G_{\alpha_n}) = M_1.$$

$$\therefore f^{-1}\left(\bigcup_{i=1}^n G_{\alpha_i}\right) = M_1.$$

$$\therefore \bigcup_{i=1}^{n} G_{\alpha_i} = f(M_1) = M_2.$$

$$\therefore G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}$$
 is a cover for M_2 .

Thus the given open cover $\{G_{\alpha}\}$ for M_2 has a finite subcover.

 M_2 is compact.

can off clos a bounder

Corollary 1. Let f be a continuous map from a compact metric space M_1 into any metric M_2 . Then $f(M_1)$ is closed and bounded.

Proof. $f(M_1)$ is compact and hence is closed and bounded. The 6.6

coclomain R Corollary 2. Any continuous real valued function f defined on a compact metric space is bounded and attains its bounds. boundary

Proof. Let M be a compact metric space.

Let $f: M \to \mathbb{R}$ be a continuous real valued function.

Then f(M) is a compact subset of R.

f(M) is a closed and bounded subset of **R**.

Since f(M) is bounded f is a bounded function.

Now, let a = l. u. b. of f(M) and b = g.l.b. of f(M).

By definition of l. u. b. and g l. b. $a, b \in \overline{f(M)}$.

But f(M) is closed. Hence $f(M) = \overline{f(M)}$.

 $\therefore a, b \in f(M).$

 \therefore There exist $x, y \in M$ such that f(x) = a and f(y) = b.

Hence f attains its bounds.

Note. Corollary (2) is not true if M is not compact.

The function $f:(0,1) \to \mathbb{R}$ defined by f(x) = 1/x is continuous but not bounded

The function $g:(0,1) \to \mathbb{R}$ defined by g(x) = x is bounded having l. u. b. = 1 and g. l. b. = 0. However this function never attains these bounds at any point in (0, 1).

COMPACTNESS

Theorem 6.15. Any continuous mapping f defined on a compact metric space (M_1, d_1) into any other metric space (M_2, d_2) is uniformly continuous on M_1 .

Proof. Let $\varepsilon > 0$ be given. Let $x \in M_1$.

Since f is continuous at x there exists $\delta_x > 0$ such that

$$d_1(y,x) < \delta_x \Rightarrow d_2(f(y),f(x)) < \frac{1}{2} \varepsilon.$$
 (1)

Now, the family of open balls $\{B(x, \frac{1}{2}\delta_x)/x \in M_1\}$ is an open cover for M_1 .

Since M_1 is compact this open cover has a finite subcover say

$$B(x_1, \frac{1}{2}\delta_{x_1}), \dots, B(x_n, \frac{1}{2}\delta_{x_n}).$$

Let
$$\delta = \min \{ \frac{1}{2} \delta_{x_1}, \dots, \frac{1}{2}, \delta_{x_n} \}$$

We claim that $d_1(p, q) < \delta \Rightarrow d_2(f(p), f(q)) < \epsilon$.

Let $p \in B(x_i, \frac{1}{2}\delta_{x_i})$ for some i where $1 \le i \le n$.

$$\therefore d_1(p,x_i) < \frac{1}{2}\delta_{x_i}. \quad \neq i \leq \text{ white use}.$$

$$d_2(f(p), f(x_i)) < \frac{1}{2} \varepsilon$$
 (by (1)) (2)

Now, $d_1(q, x_i) \le d_1(q, p) + d_1(p, x_i)$

$$\leq \delta + \frac{1}{2} \delta_{x_i}$$

$$\leq \frac{1}{2} \delta_{x_i} + \frac{1}{2} \delta_{x_i} = \delta_{x_i}.$$

Thus $d_1(q, x_i) < \delta_x$

$$\therefore d_2(f(q), f(x_i)) < \frac{1}{2} \varepsilon \quad (\text{by } (1))$$

$$\dots (3)$$

Now,
$$d_2(f(p), f(q)) \le d_2(f(p), f(x_i)) + d_2(f(x_i), f(q))$$

 $< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon. \quad (by (2) \text{ and } (3))$
Thus $d_1(p, q) < \delta \Rightarrow d_2(f(p), f(q)) < \varepsilon.$

This proves that f is uniformly continuous on M_1 .

Note. The above theorem is not true if M_1 is not compact.

We have seen that if f is a continuous bijection then f^{-1} need not be continuous. Now we shall prove that if f is a continuous bijection defined on a compact metric space, then f^{-1} is also continuous.

Theorem 6.16 Let f be a 1-1 continuous function from a compact metric space M_1 onto any metric space M_2 . Then f^{-1} is continuous on M_2 . Hence f is a homeomorphism from M_1 onto M_2 . 20 M1 - 1 M2

Proof. We shall show that f^{-1} is continuous by proving that

F is a closed set in $M_1 \Rightarrow (f^{-1})^{-1}(F) = f(F)$ is a closed set in M_2 .

Let F be a closed set in M_1 .

Since M_1 is compact F is compact. (by theorem 6.4).

Since f is continuous f(F) is a compact subset of M_2

 \therefore f(F) is a closed subset of M_2 .

 f^{-1} is continuous on M_2 .

DEVELOPMENT Solved problems

Problem 1. Prove that the range of a continuous real valued function a compact connected metric space M must be either a single point or a closed

ASSISTANCE

Solution. Let $f: M \to \mathbb{R}$ be a continuou function.

Case (i) Suppose f is a constant function.

Then the range of f is a single point.

Case (ii) Suppose f is not a constant function.

Then the range of contains more than one point.

Since M is connected f(M) is a connected subset of \mathbb{R} .

(refer theorem 5.5)

f(M) is an interval in R. (by theorem 5.3)

Also, since M is compact and f is continuous f(M) is a compact subset of \mathbb{R} . (by theorem 6.14)

f(M) is a closed and bounded subset of **R**.

Thus f(M) is a closed and bounded interval of \mathbb{R} .

Problem 2. Prove that any continuous function $f:[a,b] \to \mathbb{R}$ is not onto.

Solution. Suppose f is onto. Then $f([a, b]) = \mathbb{R}$.

Now, since [a, b] is compact and f is continuous, $f[a, b] = \mathbb{R}$ is compact which is a contradiction.

 $\therefore f$ is not onto.

Exercises.

- 1. Prove that any continuous function from a compact metric space to any other metric space is a closed map.
 - 2. Prove that any continuous function defined on a closed interval