

UNIT – 1

PYTHON

 NUMBERS

 STRINGS

 VARIABLES

 LISTS

 TUPLES

 DICTIONARIES

 SETS

 COMPARISION

NUMBERS :

Number data types store numeric values. They are immutable data types, which

means that changing the value of a number data type results in a newly allocated

object.

Different types of Number data types are :

 int

 float

 complex

INT :

int is the whole number, including negative numbers but not fractions. In

Python, there is no limit to how long an integer value can be.

 Float

This is a real number with a floating-point representation. It is specified by a

decimal point. Optionally, the character e or E followed by a positive or negative

integer may be appended to specify scientific notation. . Some examples of

numbers that are represented as floats are 0.5 and -7.823457.

Complex type

A complex number is a number that consists of real and imaginary parts. For

example, 2 + 3j is a complex number where 2 is the real component, and 3

multiplied by j is an imaginary part.

Type Conversion in Python

We can convert one number into the other form by two methods:

Using Arithmetic Operations:

We can use operations like addition, and subtraction to change the type of

number implicitly(automatically), if one of the operands is float. This method is

not working for complex numbers.

Using built-in functions

We can also use built-in functions like int(), float() and complex() to convert

into different types explicitly.

a = 2

print(float(a))

b = 5.6

print(int(b))

c = '3'

print(type(int(c)))

d = '5.6'

print(type(float(c)))

Python provides several built-in numeric functions that you can use for

mathematical operations. Here are some commonly used numeric functions in

Python:

1. abs(): Returns the absolute value of a number.

For example:

num = -10

abs_num = abs(num)

 print(abs_num)

Output: 10

2. round(): Rounds a number to the nearest integer or to the specified

number of decimal places.

For example:

num = 3.14159

rounded_num = round(num, 2)

 print(rounded_num)

Output: 3.14

3. min(): Returns the minimum value from a sequence of numbers or

arguments.

For example:

numbers = [5, 2, 9, 1, 7]

 min_num = min(numbers)

 print(min_num)

 # Output: 1

4. max(): Returns the maximum value from a sequence of numbers or

arguments.

 For example:

numbers = [5, 2, 9, 1, 7]

 max_num = max(numbers)

print(max_num)

Output: 9

5. sum(): Returns the sum of a sequence of numbers.

 For example:

numbers = [1, 2, 3, 4, 5]

 sum_num = sum(numbers)

 print(sum_num)

Output: 15

Strings in Python:

 In Python, a string is a sequence of characters enclosed in either single quotes

('') or double quotes (""). It is a fundamental data type used to represent and

manipulate textual data.

 Here are some common operations and examples related to strings in Python:

Creating a string :

my_string = "Hello, world!"

Accessing characters in a string:

my_string = "Hello"

print(my_string[0]) # Output: 'H'

print(my_string[1]) # Output: 'e'

String concatenation:

string1 = "Hello"

string2 = " world!"

result = string1 + string2

print(result)

 # Output: "Hello world!"

String length :

my_string = "Hello"

length = len(my_string)

print(length) # Output: 5

String slicing :

my_string = "Hello, world!"

print(my_string[0:5]) # Output: "Hello"

print(my_string[7:]) # Output: "world!"

String formatting (using the % operator):

name = "Alice"

age = 25

message = "My name is %s and I'm %d years old." % (name, age)

print(message)

Output: "My name is Alice and I'm 25 years old."

String interpolation (using f-strings):

name = "Alice"

age = 25

message = f"My name is {name} and I'm {age} years old."

print(message)

Output: "My name is Alice and I'm 25 years old."

String methods:

my_string = "Hello, world!"

print(my_string.upper()) # Output: "HELLO, WORLD!"

print(my_string.lower()) # Output: "hello, world!"

print(my_string.startswith("Hello")) # Output: True

print(my_string.endswith("world!")) # Output: True

print(my_string.split(", ")) # Output: ['Hello', 'world!']

These are just a few examples of string operations in Python.

Strings are immutable, meaning their contents cannot be changed once created.

 However, you can create new strings by applying various string operations.

Variables

 Variables are the reserved memory locations used to store values with in a

Python Program. This means that when you create a variable you reserve some

space in the memory.

Based on the data type of a variable, Python interpreter allocates memory and

decides what can be stored in the reserved memory. Therefore, by assigning

different data types to Python variables, you can store integers, decimals or

characters in these variables.

Creating Python Variables

Python variables do not need explicit declaration to reserve memory space or you

can say to create a variable. A Python variable is created automatically when you

assign a value to it. The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the

operand to the right of the = operator is the value stored in the variable. For

example −

counter = 100 # Creates an integer variable

miles = 1000.0 # Creates a floating point variable

name = "Zara Ali" # Creates a string variable

Delete a Variable

You can delete the reference to a number object by using the del statement. The

syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For

example −

del var

del var_a, var_b

Example

Following examples shows how we can delete a variable and if we try to use a

deleted variable then Python interpreter will throw an error:

counter = 100

print (counter)

del counter

print (counter)

This will produce the following result:

100

Traceback (most recent call last):

File "main.py", line 7, in <module>

print (counter)

NameError: name 'counter' is not defined

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously

which means you can create multiple variables at a time. For example −

a = b = c = 100

print (a)

print (b)

print (c)

This produces the following result:

100

100

100

Here, an integer object is created with the value 1, and all three variables are

assigned to the same memory location. You can also assign multiple objects to

multiple variables. For example −

a,b,c = 1,2,"Zara Ali"

print (a)

print (b)

print (c)

This produces the following result:

1

2

Zara Ali

Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value "Zara Ali" is assigned to the

variable c.

Python Variable Names

Every Python variable should have a unique name like a, b, c. A variable name

can be meaningful like color, age, name etc. There are certain rules which should

be taken care while naming a Python variable:

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number or any special character like $,

(, * % etc.

 A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)

 Python variable names are case-sensitive which means Name and NAME

are two different variables in Python.

 Python reserved keywords cannot be used naming the variable.

Example

Following are valid Python variable names:

counter = 100

_count = 100

name1 = "Zara"

name2 = "Nuha"

Age = 20

zara_salary = 100000

print (counter)

print (_count)

print (name1)

print (name2)

print (Age)

print (zara_salary)

This will produce the following result:

100

100

Zara

Nuha

20

100000

Example

Following are invalid Python variable names:

1counter = 100

$_count = 100

zara-salary = 100000

print (1counter)

print ($count)

print (zara-salary)

This will produce the following result:

File "main.py", line 3

1counter = 100

^

SyntaxError: invalid syntax

Python Local Variable

Python Local Variables are defined inside a function. We can not access variable

outside the function.

A Python functions is a piece of reusable code and you will learn more about

function in Python - Functions tutorial.

Following is an example to show the usage of local variables:

def sum(x,y):

sum = x + y

return sum

print(sum(5, 10))

15

Python Global Variable

Any variable created outside a function can be accessed within any function and

so they have global scope. Following is an example of global variables:

x = 5

y = 10

def sum():

sum = x + y

return sum

print(sum())

This will produce the following result:

15

https://www.tutorialspoint.com/python/python_functions.htm

LISTS IN PYTHON

 Lists in Python are one of the most commonly used data structures. They

are used to store multiple items of any data type in a single variable. Lists are

created using square brackets [] and items are separated by commas.

 Lists are ordered, changeable, and allow duplicate values. You can access

list items by using positive or negative indexes, or by using loops. You can also

perform various operations on lists, such as adding, removing, sorting, slicing,

copying, etc.

You can access the elements of a list by using their index positions, starting

from 0 for the first element. You can also use negative indexes to access the

elements from the end of the list, starting from -1 for the last element.

For example :

print(my_list[0]) # prints "apple"

print(my_list[-1]) # prints "melon"

You can also use slicing to get a range of elements from a list, by specifying the

start and end indexes separated by a colon : .

 For example:

print(my_list[1:4]) # prints ["banana", "cherry", "orange"]

print(my_list[:3]) # prints ["apple", "banana", "cherry"]

print(my_list[3:]) # prints ["orange", "kiwi", "melon"]

You can modify the elements of a list by assigning new values to them using the

index operator []. You can also use methods like append(), insert(), remove(),

pop(), sort(), reverse(), etc. to manipulate the list.

 For example:

my_list[1] = "blueberry" # changes the second element to "blueberry"

my_list.append("strawberry") # adds "strawberry" to the end of the list

my_list.insert(2, "lemon") # inserts "lemon" at the third position

my_list.remove("orange") # removes "orange" from the list

my_list.pop() # removes and returns the last element of the list

my_list.sort() # sorts the list in ascending order

my_list.reverse() # reverses the order of the list

TUPLES:

A tuple is an ordered collection of elements, enclosed in parentheses (). Tuples

are similar to lists, but they are immutable, meaning their elements cannot be

changed once defined. Here's an example of creating a tuple in Python:

my_tuple = (1, 2, 3, 'a', 'b', 'c')

In the above example, my_tuple is a tuple that contains integers and strings.

Here are a few important things to note about tuples:

1. Accessing Elements: You can access individual elements of a tuple using

indexing, similar to lists. The indexing starts from 0.

For example:

print(my_tuple[0]) # Output: 1

print(my_tuple[3]) # Output: 'a'

2. Tuple Slicing: You can also use slicing to extract a subset of elements from

a tuple. Slicing works similarly to lists.

For example:

print(my_tuple[1:4]) # Output: (2, 3, 'a')

3. Immutable: Unlike lists, tuples are immutable, which means you cannot

modify their elements. Once a tuple is created, you cannot add, remove, or

modify its elements.

4. Length and Count: You can find the length of a tuple using the len()

function and count the occurrences of a specific element using the count()

method.

For example:

print(len(my_tuple)) # Output: 6

print(my_tuple.count('a')) # Output: 1

5. Tuple Concatenation: You can concatenate two tuples using the + operator,

which creates a new tuple.

For example:

new_tuple = my_tuple + ('x', 'y', 'z')

print(new_tuple) # Output: (1, 2, 3, 'a', 'b', 'c', 'x', 'y', 'z')

6. Tuple Unpacking: You can assign the elements of a tuple to multiple

variables in a single line. The number of variables must match the number of

elements in the tuple.

For example:

a, b, c, d, e, f = my_tuple

print(c) # Output: 3

These are some of the basic operations and concepts related to tuples in Python.

Tuples are often used to represent a collection of related values that should not

be modified, such as coordinates, database records, or key-value pairs.

DICTIONARIES:

A dictionary is a collection of key-value pairs enclosed in curly braces {}.

Dictionaries are also sometimes referred to as associative arrays or hash maps.

Here's an example of creating a dictionary in Python:

my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

In the above example, my_dict is a dictionary that stores information about a

person, including their name, age, and city. Here are some important points

about dictionaries:

1. Accessing Values: You can access the values in a dictionary by referring to

its keys.

For example:

print(my_dict['name']) # Output: 'John'

print(my_dict['age']) # Output: 30

2. Modifying Values: You can modify the values associated with specific keys

in a dictionary. Dictionaries are mutable, so you can change, add, or remove

key-value pairs.

For example:

my_dict['age'] = 35 # Modifying the 'age' value

my_dict['city'] = 'San Francisco' # Modifying the 'city' value

my_dict['occupation'] = 'Engineer' # Adding a new key-value pair

del my_dict['name'] # Removing the 'name' key-value pair

3. Dictionary Methods: Python provides various methods to work with

dictionaries. Some commonly used methods include:

 keys(): Returns a list of all the keys in the dictionary.

 values(): Returns a list of all the values in the dictionary.

 items(): Returns a list of tuples containing the key-value pairs.

print(my_dict.keys()) # Output: ['age', 'city', 'occupation']

print(my_dict.values()) # Output: [35, 'San Francisco', 'Engineer']

print(my_dict.items()) # Output: [('age', 35), ('city', 'San Francisco'),

('occupation', 'Engineer')]

4. Dictionary Iteration: You can iterate over the keys, values, or items of a

dictionary using a for loop.

For example:

for key in my_dict: print(key, my_dict[key])

5. Length and Membership: You can find the number of key-value pairs in a

dictionary using the len() function. You can also check for the presence of a

key using the in keyword.

For example:

print(len(my_dict)) # Output: 3 (after modifications above)

print('name' in my_dict) # Output: False

print('age' in my_dict) # Output: True

Dictionaries are useful for storing and retrieving data based on unique keys.

They provide a fast and efficient way to access values using their associated

keys.

SETS IN PYTHON:

A set is an unordered collection of unique elements. It is defined by enclosing

elements in curly braces ({}) or by using the built-in set() function. Sets are

mutable, meaning you can add or remove elements from them.

EXAMPLES:

CREATING A SET:

Creating an empty set

my_set = set()

Creating a set with initial values

my_set = {1, 2, 3}

ADDING ELEMENT TO A SET:

my_set = {1, 2, 3}

my_set.add(4)

my_set is now {1, 2, 3, 4}

Adding multiple elements at once

my_set.update([5, 6, 7])

my_set is now {1, 2, 3, 4, 5, 6, 7}

 REMOVING ELEMENT FROM A SET:

my_set = {1, 2, 3, 4, 5}

my_set.remove(3)

my_set is now {1, 2, 4, 5}

Removing an element that does not exist will raise a KeyError

my_set.remove(6)

Alternatively, you can use discard() to remove an element, but it won't raise

an error if the element doesn't exist.

my_set.discard(6)

Removing and returning an arbitrary element from the set

element = my_set.pop()

SET OPREATION:

my_set = {1, 2, 3, 4, 5}

for element in my_set:

 print(element)

These are some of the basic operations you can perform on sets in Python. Sets

are useful when you want to work with unique elements or need to perform

operations like union, intersection, and difference on collections of elements.

COMPARISON IN PYTHON:

 In Python, comparison refers to the process of evaluating whether two

values are equal, not equal, greater than, less than, greater than or equal to, or

less than or equal to each other. Python provides several comparison operators

that allow you to perform these comparisons. Here are the most commonly used

comparison operators in Python

1. Equal to (==): This operator checks if two values are equal.

2. Not equal to (!=): This operator checks if two values are not equal.

3. Greater than (>): This operator checks if the value on the left is greater

than the value on the right.

4. Less than (<): This operator checks if the value on the left is less than the

value on the right.

5. Greater than or equal to (>=): This operator checks if the value on the left

is greater than or equal to the value on the right.

6. Less than or equal to (<=): This operator checks if the value on the left is

less than or equal to the value on the right.

Here's an example that demonstrates the usage of comparison operators in

Python:

x = 5

y = 10

Equal to

print(x == y) # False

Not equal to

print(x != y) # True

Greater than

print(x > y) # False

Less than

print(x < y) # True

Greater than or equal to

print(x >= y) # False

Less than or equal to

print(x <= y) # True

In this example, we have two variables x and y with values 5 and 10,

respectively. We then perform various comparisons using the comparison

operators. The result of each comparison is printed, indicating whether the

comparison is True or False.

 UNIT-2

 CODE STRUCTURES

1. If Statement:
The if statement evaluates condition.

• If condition is evaluated to True, the code inside the

body of if is executed.

• If condition is evaluated to False, the code inside the

body of if is skipped.

 SYNTAX:

 if condition:

 # Statements to execute if

 # condition is true

Flow Chart:

Example:

 number = 5

 if number > 0:

 Print (Number is positive.)

OUTPUT:

Number is positive.

2. IF ELSE STATEMENT

• The if...else statement evaluates the given condition:

If the condition evaluates to True,

• the code inside if is executed

• the code inside else is skipped

If the condition evaluates to False,

• the code inside else is executed

• the code inside if is skipped

SYNTAX:

if (condition):

 # Executes this block if

 # condition is true

else:

 # Executes this block if

 # condition is false

Flow Chart:

Example:

Age = 10

if (Age > 18):

print (Eligible for vote)

else:

print (Not Eligible for vote)

OUTPUT:

Not Eligible for vote

3. IF ELIF ELSE STATEMENT

• The if...else statement is used to execute a block of

code among two alternatives.

• However, if we need to make a choice between

more than two alternatives, then we use the

if...elif...else statement.

Here,

• If condition1 evaluates to true, code block 1 is

executed.

• If condition1 evaluates to false, then condition2 is

evaluated.

• If condition2 is true, code block 2 is executed.

• If condition2 is false, code block 3 is executed

SYNTAX:

if condition1:

 # code block 1

elif condition2:

 # code block 2

else:

 # code block 3

Example:

number = 0

if number > 0:

print (Positive number)

elif number = = 0:

print (Zero)

else:

print (Negative number)

Decorators in Python

In Python, a decorator is a design pattern that allows you to

modify the functionality of a function by wrapping it in

another function.

The outer function is called the decorator, which takes the

original function as an argument and returns a modified

version of it.

Prerequisites for learning decorators

Before we learn about decorators, we need to understand a

few important concepts related to Python functions. Also,

remember that everything in Python is an object, even

functions are objects.

Nested Function

We can include one function inside another, known as a

nested function. For example,

def outer(x):

 def inner(y):

 return x + y

 return inner

add_five = outer(5)

result = add_five(6)

print(result) # prints 11

Output: 11

Here, we have created the inner() function inside

the outer() function.

Pass Function as Argument

We can pass a function as an argument to another function in

Python. For Example,

def add(x, y):

 return x + y

def calculate(func, x, y):

 return func(x, y)

result = calculate(add, 4, 6)

print(result) # prints 10

Run Code

Output

10

In the above example, the calculate() function takes a

function as its argument. While calling calculate(), we

are passing the add() function as the argument.

In the calculate() function,

arguments: func, x, y become add, 4, and 6 respectively.

https://www.programiz.com/python-programming/online-compiler

And hence, func(x, y) becomes add(4, 6) which

returns 10.

Return a Function as a Value

In Python, we can also return a function as a return value. For

example,

def greeting(name):

 def hello():

 return "Hello, " + name + "!"

 return hello

greet = greeting("Atlantis")

print(greet()) # prints "Hello, Atlantis!"

Output: Hello, Atlantis!

Run Code

In the above example, the return hello statement returns

the inner hello() function. This function is now assigned

to the greet variable.

That's why, when we call greet() as a function, we get the

output.

Python Decorators

As mentioned earlier, A Python decorator is a function that

takes in a function and returns it by adding some

functionality.

In fact, any object which implements the

special __call__() method is termed callable. So, in the

most basic sense, a decorator is a callable that returns a

callable.

https://www.programiz.com/python-programming/online-compiler

Basically, a decorator takes in a function, adds some

functionality and returns it.

def make_pretty(func):

 def inner():

 print("I got decorated")

 func()

 return inner

def ordinary():

 print("I am ordinary")

Output: I am ordinary

Run Code

Here, we have created two functions:

 ordinary() that prints "I am ordinary"

 make_pretty() that takes a function as its argument and has a

nested function named inner(), and returns the inner function.

We are calling the ordinary() function normally, so we

get the output "I am ordinary". Now, let's call it using

the decorator function.

def make_pretty(func):

 # define the inner function

 def inner():

 # add some additional behavior to decorated function

 print("I got decorated")

 # call original function

 func()

 # return the inner function

 return inner

https://www.programiz.com/python-programming/online-compiler

define ordinary function

def ordinary():

 print("I am ordinary")

decorate the ordinary function

decorated_func = make_pretty(ordinary)

call the decorated function

decorated_func()

Run Code

Output

I got decorated

I am ordinary

In the example shown above, make_pretty() is a

decorator. Notice the code,

decorated_func = make_pretty(ordinary)

 We are now passing the ordinary() function as the argument

to the make_pretty().

 The make_pretty() function returns the inner function, and it

is now assigned to the decorated_func variable.

decorated_func()

Here, we are actually calling the inner() function, where

we are printing

https://www.programiz.com/python-programming/online-compiler

PYTHON GENERATORS

What are Generators ?

 Generators are functions that return an iterator

 They generate values lazily, one at a time, rather than

producing the entire sequence at once

 Each value is computed on-demand, saving memory and

improving performance

Generator Functions :

 Generator functions are defined using the yield keyword

instead of return

 They can pause and resume their execution, retaining their

local state

Example :

def count_up_to(n):

 i = 0

 while i < n:

 yield i

 i += 1

Usage

numbers = count_up_to(5)

print(next(numbers)) # Output: 0

print(next(numbers)) # Output: 1

print(next(numbers)) # Output: 2

Generator Expressions :

 Generator expressions are concise and memory-efficient

 They are similar to list comprehensions but enclosed in

parentheses instead of brackets

Example :

squares = (x ** 2 for x in range(5))

print(next(squares)) # Output: 0

print(next(squares)) # Output: 1

print(next(squares)) # Output: 4

Lazy Evaluation :

 Generators follow the principle of lazy evaluation

 Values are computed on-demand, reducing memory

consumption

 Ideal for working with large or infinite sequences

Example :

def fibonacci():

 a, b = 0, 1

 while True:

 yield a

 a, b = b, a + b

fib = fibonacci()

for _ in range(10):

 print(next(fib))

Chaining Generators :

 Generators can be chained together to perform complex

operations

Example :

def numbers():

 yield from range(5)

def squares(nums):

 yield from (x ** 2 for x in nums)

result = squares(numbers())

print(next(result)) # Output: 0

print(next(result)) # Output: 1

print(next(result)) # Output: 4

Benefits of Generators :

Memory efficiency :

 Values are generated on-the-fly, reducing memory usage

Improved performance :

Laziness allows for faster code execution

Simplified code :

Generators enable cleaner and more readable code

Use Cases :

Large datasets :

Process large datasets in a memory-efficient manner

Infinite sequences :

Generate values on-the-fly without exhausting memory

Stream processing :

 Handle real-time data streams without buffering

NAMESPACE:

 In Python, a namespace is a system that

organizes and manages names (identifiers) to avoid naming

conflicts and provide a way to access variables, functions,

classes, and other objects. It acts as a container or a context in

which names are unique and can be used to refer to specific

objects. Namespaces help in organizing and categorizing code

elements and provide a way to differentiate between objects

with the same name

Python has various types of namespaces:

 Built-in namespace

 Global namespace

 Local namespace

 Module namespace

Built-in Namespace:

 It contains the names of all built-in functions,

types, and exceptions provided by Python itself.

Example:

print(len("Hello")) # 'len' is a built-in function from the built-

in namespace

Global Namespace:

 It contains names defined at the top level of a module

or those explicitly declared as global within a function.

Example:

global_var = 10 # 'global_var' is defined in the global

namespace

def some_function():

 global global_var

 global_var += 5 # Accessing and modifying 'global_var'

from the global namespace

some_function()

print(global_var) # Output: 15

Local Namespace:

 It exists within a function or method and contains local

variables and parameters.

Example:

 def some_function():

 local_var = 20 # 'local_var' is defined in the local

namespace

 print(local_var)

some_function() # Output: 20

Module Namespace:

 It contains the names defined within a module, including

variables, functions, and classes.

Example:

my_module.py

module_var = "Module Variable" # 'module_var' is defined in

the module namespace

def module_function():

 print("Module Function")

class MyClass:

 pass

main.py

import my_module

print(my_module.module_var) # Accessing 'module_var'

from the module namespace

my_module.module_function() # Calling 'module_function'

from the module namespace

obj = my_module.MyClass() # Creating an instance of

'MyClass' from the module namespace

 SCOPE IN PYTHON

SCOPE:

 In Python, scope refers to the region or context in which

a variable, function, or other names are defined and can be

accessed. The scope determines the visibility and lifetime of

names and controls their accessibility throughout the program.

Python has several types of scopes:

 global scope

 local scope

 nested scope

Global Scope:

 Variables defined outside of any function or class have

global scope. They can be accessed from any part of the

program.

Example:

 global_var = 10 # Variable with global scope

def some_function():

 print(global_var) # Accessing the global variable

some_function() # Output: 10

Local Scope:

 Variables defined within a function have local scope

and are accessible only within that function.

Example:

def some_function():

 local_var = 20 # Variable with local scope

 print(local_var)

some_function() # Output: 20

Trying to access the local variable outside the function will

raise an error

print(local_var) # NameError: name 'local_var' is not defined

Nested Scope:

 When a function is defined inside another function,

it creates a nested scope. Variables defined in the outer

function can be accessed within the inner function.

Example:

 def outer_function():

 outer_var = 30 # Variable in the outer function's scope

 def inner_function():

 print(outer_var) # Accessing the variable from the outer

scope

 inner_function()

outer_function() # Output: 30

 Built-in Scope:

 The built-in scope contains names that are built

into Python itself, such as functions like print() and len().

These names are accessible from anywhere in the program.

Example:

 print(len("Hello")) # Using the built-in function 'len()'

from the built-in scope

UNIT-3

1. Standalone Programs:

A standalone program in Python is a self-contained script or application that can be executed

independently. To create a standalone program, you typically write your code in a Python script file

(with a .py extension) and execute it using the Python interpreter.

Example of a simple standalone program:

Code:

hello.py

print("Hello, World!")

To run the program, you execute it from the command line:

OUTPUT:

hello.py

2. Command-Line Arguments:

You can pass command-line arguments to Python scripts using the sys.argv list from the sys module.

Additionally, libraries like argparse provide a more structured and user-friendly way to handle

command-line arguments.

Example using sys.argv:

CODE:

import sys

Access command-line arguments

if len(sys.argv) > 1:

 print(f"Hello, {sys.argv[1]}!")

else:

 print("Hello, World!")

Command-line execution:

OUTPUT:

python hello.py Alice

3. Modules and the import Statement:

Python code can be organized into modules, which are files containing Python code. Modules can be

imported into other Python scripts using the import statement.

Example of using an imported module:

CODE:

mymodule.py

def greet(name):

 return f"Hello, {name}!"

main.py

import mymodule

result = mymodule.greet("Alice")

print(result)

4. The Python Standard Library:

The Python Standard Library is a comprehensive set of modules and functions that come with Python.

It covers a wide range of tasks, from file I/O and regular expressions to networking and data

manipulation. You can use these modules without needing to install additional packages.

Example of using the math module from the standard library:

CODE:

import math

result = math.sqrt(16)

print(result) # Output: 4.0

The Python Standard Library is a valuable resource for Python developers, as it provides solutions to

many common programming tasks. You can explore the library's documentation to find modules that

suit your specific needs.

5. Define a Class with class:

A class is defined using the class keyword in Python. It serves as a blueprint for creating objects,

specifying their attributes (variables) and methods (functions).

CODE:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

6. Inheritance:

Inheritance allows you to create a new class that inherits attributes and methods from an

existing class. The new class is called the child or subclass.

CODE:

class Student(Person):

 def __init__(self, name, age, student_id):

 super().__init__(name, age)

 self.student_id = student_id

7. Override a Method:

You can override a method in the child class by defining a method with the same name. This allows

the child class to provide its own implementation.

8. Add a Method:

You can add new methods to a class to extend its functionality. This is done by defining methods

within the class.

CODE:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greet(self):

 return f"Hello, my name is {self.name}."

9. Get Help from Parent with super:

The super() function is used to call a method from the parent class, enabling you to access and use the

parent class's methods in the child class.

10. In self Defense:

The self keyword refers to the instance of the class. It's used to access and modify the instance's

attributes and methods.

11. Get and Set Attribute Values with Properties:

You can use properties to get and set attribute values while encapsulating the implementation details.

CODE:

class Rectangle:

 def __init__(self, width, height):

 self._width = width # Private attribute

 self._height = height # Private attribute

 @property

 def width(self):

 return self._width

 @width.setter

 def width(self, value):

 if value > 0:

 self._width = value

 @property

 def height(self):

 return self._height

 @height.setter

 def height(self, value):

 if value > 0:

 self._height = value

12. Name Mangling for Privacy:

In Python, you can use name mangling to make attributes "private" by prefixing them with double

underscores. This does not make them entirely private but makes them less accessible.

CODE:

class MyClass:

 def __init__(self):

 self.__private_var = 42

13. Method Types:

There are three primary types of methods in Python classes:

Instance methods: Take self as the first parameter and work on instance-specific data.

Class methods: Take cls as the first parameter and work on class-specific data.

Static methods: Do not take self or cls and work with data that is not instance- or class-specific.

14. Duck Typing:

Python follows the "duck typing" principle, meaning that the type or class of an object is determined

by its behavior, not its explicit type. If an object quacks like a duck, it's treated as a duck.

15. Special Methods:

Python has a set of special methods, also known as "magic methods" or "dunder methods," that allow

you to define how objects of a class behave in various contexts. For example, __init__ is used for

object initialization, and __str__ for string representation.

16. Composition:

Composition is the practice of building more complex classes by combining or "composing" simpler

classes. It promotes code reusability and modular design.

CODE:

class Engine:

 def start(self):

 print("Engine started")

class Car:

 def __init__(self):

 self.engine = Engine()

 def start(self):

 self.engine.start()

These concepts are essential for working with object-oriented programming in Python. Classes and

objects provide a powerful way to structure and organize your code, leading to more maintainable and

reusable solutions.

UNIT-4

1. File Input / Output (I/O):

Python provides built-in functions to work with files, making it simple to store and retrieve data. You

can open, read, and write to files using the open() function.

Example: Storing data to a text file and retrieving it.

CODE:

Storing data

with open('data.txt', 'w') as file:

 file.write("This is some data to store.")

Retrieving data

with open('data.txt', 'r') as file:

 data = file.read()

print(data)

2. Structured Text Files:

Common structured formats like CSV (Comma-Separated Values) and JSON (JavaScript Object

Notation) are widely used for storing structured data.

Example: Storing and retrieving data in JSON format.

CODE:

import json

data = {"name": "John", "age": 30, "city": "New York"}

Storing data in JSON

with open('data.json', 'w') as json_file:

 json.dump(data, json_file)

Retrieving data from JSON

with open('data.json', 'r') as json_file:

 retrieved_data = json.load(json_file)

print(retrieved_data)

3. Relational Databases:

Python supports various database connectors (e.g., sqlite3, MySQLdb, psycopg2) that allow you to

interact with relational databases. You can create, read, update, and delete data in structured tables

using SQL queries.

Example: Storing and retrieving data in a SQLite database.

CODE:

import sqlite3

Storing data

conn = sqlite3.connect('mydb.db')

cursor = conn.cursor()

cursor.execute("CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, name

TEXT, age INTEGER)")

cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ("John", 30))

conn.commit()

conn.close()

Retrieving data

conn = sqlite3.connect('mydb.db')

cursor = conn.cursor()

cursor.execute("SELECT * FROM users")

retrieved_data = cursor.fetchall()

conn.close()

print(retrieved_data)

4. NoSQL Data Stores:

NoSQL databases like MongoDB or Redis can be used to store and retrieve data in a more flexible,

non-relational format. You'll need to use specific libraries or clients for each NoSQL database.

5. Web Services:

Python can interact with web services and APIs to retrieve data from remote sources. Libraries like

requests are commonly used for this purpose.

Example: Retrieving data from a web service.

CODE:

import requests

response = requests.get('https://jsonplaceholder.typicode.com/posts/1')

data = response.json()

print(data)

The choice of data storage method depends on the nature of your data, the size of your dataset, and the

use case. For small-scale data, files and structured text formats might suffice. For larger-scale

applications with structured data, relational databases are a good choice. NoSQL databases are

preferred for more flexible, unstructured data. Web services are ideal for data from remote sources,

APIs, or web scraping.

6. Web Clients:

A web client in Python is an application that makes HTTP requests to retrieve web content or interact

with web services. The most commonly used library for this purpose is requests. Here's a basic

example of using it to retrieve data from a website:

CODE:

import requests

response = requests.get('https://www.example.com')

print(response.text) # The HTML content of the webpage

7. Web Servers:

While Python is not the most common choice for building web servers, you can create simple web

servers using libraries like Flask or Django. Here's a simple example using Flask to create a basic web

server:

CODE:

from flask import Flask

app = Flask(__name)

@app.route('/')

def hello():

 return "Hello, World!"

if __name__ == '__main__':

 app.run()

When you run this script, it starts a web server that listens on port 5000 and responds with "Hello,

World!" when you visit the root URL (http://localhost:5000).

8. Web Services:

Web services are often accessed by making HTTP requests to APIs. You can use the requests library

to interact with web services by sending GET, POST, PUT, or DELETE requests. Here's an example

of making a GET request to a JSON-based API:

CODE:

import requests

response = requests.get('https://jsonplaceholder.typicode.com/posts/1')

data = response.json()

print(data)

9. Automation:

You can automate web-related tasks using Python for various purposes, such as web scraping, form

filling, or interacting with web services. To automate interactions with websites, you can use libraries

like Selenium or Beautiful Soup.

Example of using Selenium to automate a web browser:

CODE:

from selenium import webdriver

Create an instance of a web browser (e.g., Chrome)

driver = webdriver.Chrome()

Navigate to a website

driver.get('https://www.example.com')

Find and interact with web elements (e.g., fill out a form)

search_box = driver.find_element_by_name('q')

search_box.send_keys('Python automation')

search_box.submit()

Extract data from the page

search_results = driver.find_elements_by_css_selector('.g')

for result in search_results:

 print(result.text)

Close the web browser

driver.quit()

Remember to install the required libraries (e.g., requests, Flask, Selenium) using pip before using

them in your Python projects. These are just basic examples; you can build more complex

applications and automation scripts tailored to your specific use cases.

UNIT-5

1. Files and Directories:

To work with files and directories in Python, you can use the built-in os and shutil modules. The os

module provides functions for interacting with the operating system, including file and directory

operations.

Example of creating a directory and writing a file:

CODE:

import os

Create a directory

os.mkdir('my_directory')

Write to a file

with open('my_directory/my_file.txt', 'w') as file:

 file.write('Hello, World!')

2. Programs and Processes:

You can run external programs and manage processes in Python using the subprocess module. It

allows you to execute shell commands and interact with their input and output streams.

Example of running an external program:

CODE:

import subprocess

result = subprocess.run(['ls', '-l'], stdout=subprocess.PIPE, text=True)

print(result.stdout)

3. Calendar and Clocks:

Python provides the datetime module to work with dates and times. You can use it to retrieve the

current date and time, format dates, and perform various date-related operations.

Example of working with dates and times:

CODE:

import datetime

Get the current date and time

now = datetime.datetime.now()

print(now)

Format a date

formatted_date = now.strftime('%Y-%m-%d %H:%M:%S')

print(formatted_date)

For more advanced calendar and scheduling functionality, you can explore external libraries like

schedule or calendar.

4. Queues:

Queues are used to facilitate communication and coordination between different parts of a program,

typically in a concurrent or parallel context. In Python, the queue module provides various queue

implementations, including Queue, LifoQueue, and PriorityQueue.

Example of using Queue for producer-consumer concurrency:

CODE:

import queue

import threading

def producer(q):

 for i in range(5):

 q.put(i)

def consumer(q):

 while True:

 item = q.get()

 print(f"Consumed: {item}")

 q.task_done()

q = queue.Queue()

producer_thread = threading.Thread(target=producer, args=(q,))

consumer_thread = threading.Thread(target=consumer, args=(q))

producer_thread.start()

consumer_thread.start()

5. Processes:

The multiprocessing module in Python allows you to create and manage multiple processes to achieve

parallelism.

Example of using multiprocessing for parallel execution:

CODE:

import multiprocessing

def worker(num):

 print(f"Worker {num}")

processes = []

for i in range(4):

 process = multiprocessing.Process(target=worker, args=(i,))

 processes.append(process)

 process.start()

for process in processes:

 process.join()

6. Threads:

Python's threading module provides a way to create and manage threads for concurrent execution.

However, due to the Global Interpreter Lock (GIL), Python threads are not suitable for CPU-bound

tasks but are useful for I/O-bound tasks.

Green Threads and Gevent:

Gevent is a Python library that provides a high-level, cooperative multitasking framework for I/O-

bound operations. It uses green threads (coroutines) to achieve concurrency without creating separate

system threads.

Example of using Gevent for concurrent I/O operations:

CODE:

import gevent

from gevent import monkey

monkey.patch_all()

def task1():

 print("Task 1 started")

 gevent.sleep(1)

 print("Task 1 completed")

def task2():

 print("Task 2 started")

 gevent.sleep(0.5)

 print("Task 2 completed")

gevent.joinall([gevent.spawn(task1), gevent.spawn(task2)])

7. Twisted:

Twisted is an event-driven networking engine and framework for building networked applications. It

provides abstractions for handling asynchronous network communication, making it well-suited for

building servers and clients with high concurrency and scalability requirements.

8. Redis:

Redis is an in-memory data store that supports various data structures and provides high-performance,

distributed data storage. It can be used for building concurrent applications and implementing task

queues.

Example of using Redis as a task queue:

CODE:

import redis

r = redis.StrictRedis(host='localhost', port=6379, db=0)

Push a task onto the queue

r.lpush('task_queue', 'task_data')

Pop a task from the queue

task = r.rpop('task_queue')

print(f"Task: {task}")

These are just some of the methods and libraries you can use to implement concurrency in Python,

depending on your specific use case and requirements. The choice of method depends on the nature of

the tasks, performance needs, and the type of concurrency you want to achieve.

9. Network Patterns:

Network patterns refer to the high-level architectural models and communication paradigms used in

networked applications. Patterns like Request-Response, Publish-Subscribe, and Peer-to-Peer are

commonly used.

The Publish-Subscribe Model:

In the Publish-Subscribe model, publishers send messages to a topic or channel, and subscribers

receive messages from that topic. Libraries like paho-mqtt or redis-py can be used for implementing

publish-subscribe systems.

TCP/IP and Sockets:

The Transmission Control Protocol (TCP) and Internet Protocol (IP) are the foundational protocols of

the internet. Python's socket module allows you to create network sockets for communication over

TCP/IP.

Example of creating a simple TCP server and client:

CODE:

import socket

Server

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind(('localhost', 12345))

server_socket.listen(5)

client_socket, client_address = server_socket.accept()

data = client_socket.recv(1024)

Client

client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client_socket.connect(('localhost', 12345))

client_socket.send(b"Hello, server")

ZeroMQ:

ZeroMQ is a high-performance asynchronous messaging library that simplifies complex network

communication patterns. The pyzmq library is used for working with ZeroMQ in Python.

10. Internet Services:

Internet services refer to a wide range of services and applications available on the internet, such as

email, web browsing, and instant messaging.

11. Web Services and APIs:

Web services and APIs provide a structured way for software systems to communicate over the

internet. Python libraries like requests are commonly used to interact with web services and APIs.

Example of making an API request using the requests library:

CODE:

import requests

response = requests.get('https://api.example.com/data')

data = response.json()

12. Remote Processing:

Remote processing involves executing code or tasks on remote servers or distributed systems. Python

provides libraries like paramiko for SSH-based remote execution and tools like Celery for distributed

task processing.

Big Fat Data and MapReduce:

Big data processing involves handling large volumes of data using parallel processing techniques. The

Hadoop ecosystem, including Hadoop Streaming with Python, can be used for MapReduce tasks.

Working in the Clouds:

Cloud computing platforms like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud

Platform provide cloud-based infrastructure and services. Python libraries and SDKs are available for

interacting with these platforms.

Example of listing AWS S3 buckets using the boto3 library:

CODE:

import boto3

s3 = boto3.client('s3')

response = s3.list_buckets()

buckets = [bucket['Name'] for bucket in response['Buckets']]

These network-related topics cover a wide range of capabilities in Python, from basic network

communication to advanced big data processing and cloud integration. The specific libraries and tools

you use will depend on your use case and requirements.

	Float
	Complex type
	Type Conversion in Python
	Using Arithmetic Operations:
	Using built-in functions

	Variables
	Creating Python Variables
	Delete a Variable
	Example

	Multiple Assignment
	Python Variable Names
	Example
	Example (1)

	Python Local Variable
	Python Global Variable

	SETS IN PYTHON:
	A set is an unordered collection of unique elements. It is defined by enclosing elements in curly braces ({}) or by using the built-in set() function. Sets are mutable, meaning you can add or remove elements from them.
	Decorators in Python
	Pass Function as Argument
	Return a Function as a Value

	Python Decorators

