
Unit-I

Introduction to DBMS give detailed notes

1. What is a Database?

A database is an organized collection of related data stored in a structured format so that it

can be easily accessed, managed, and updated.

Example:

A student database may include data about:

 Student ID

 Name

 Course

 Marks

🔶 2. What is DBMS?

A Database Management System (DBMS) is a software system that allows users to create,

maintain, manipulate, and control access to databases.

Functions of DBMS:

 Data Storage

 Data Retrieval (Queries)

 Data Manipulation (Insert, Update, Delete)

 Data Security and Authorization

 Backup and Recovery

 Data Integrity Enforcement

 Concurrent Data Access

🔶 3. Features of DBMS

 Data Independence: Changes in storage structure do not affect the application.

 Minimal Redundancy: Prevents duplication of data.

 Data Consistency: Same data across all instances.

 Security: Access controls and permissions.

 Backup and Recovery: Automatic data recovery in case of failure.

 Multi-User Access: Supports multiple users simultaneously.

🔶 4. Advantages of DBMS

Feature Description

Reduced Redundancy Prevents duplicate data

Improved Integrity Enforces accuracy with constraints

Increased Security Access control at user and data level

Concurrent Access Multiple users can use the system simultaneously

Backup & Recovery Automated tools for data protection

🔶 5. Disadvantages of DBMS

 High initial cost of hardware/software

 Complex setup and maintenance

 Requires trained personnel

 Performance overhead in large systems

🔶 6. Components of DBMS

Component Description

Hardware Physical devices where data is stored (e.g., servers)

Software The DBMS software itself (e.g., MySQL, Oracle)

Data The actual data and metadata (data about data)

Users People who interact with the database

Procedures Instructions and rules for using the DBMS effectively

🔶 7. Types of Database Users

User Type Role/Function

Database Administrator (DBA) Manages and maintains the database system

Application Programmers Develop programs that interact with the DBMS

End Users Query the database through applications

System Analysts Design the database based on requirements

🔶 8. Database Models

Model Type Description Example Use

Hierarchical Model Data organized in tree structure (parent-child) File systems

Model Type Description Example Use

Network Model Data as graph with many-to-many relationships Telecom DBs

Relational Model Data stored in tables (most widely used) MySQL, Oracle

Object-Oriented Model Data as objects (OOP-based) Multimedia DBs

🔶 9. DBMS vs RDBMS

Feature DBMS RDBMS

Data Storage Files Tables (Relations)

Relationships Not supported Supported through keys

Integrity Constraints Not enforced Enforced using primary/foreign keys

Examples XML DB, File System MySQL, PostgreSQL, Oracle

🔶 10. DBMS Languages

Language Purpose Example

DDL (Data Definition Language) Defines structure CREATE TABLE students (...)

DML (Data Manipulation

Language)
Manipulates data

INSERT INTO students VALUES

(...)

DCL (Data Control Language)
Grants/revokes

access

GRANT SELECT ON students TO

user;

TCL (Transaction Control

Language)

Controls

transactions
COMMIT;, ROLLBACK;

🔶 11. Keys in DBMS

Key Type Description

Primary Key Uniquely identifies each record

Foreign Key Refers to primary key in another table

Candidate Key A field that can serve as a primary key

Composite Key Combination of two or more fields as a key

Super Key A set of attributes that uniquely identifies

🔶 12. ACID Properties (for Transactions)

Property Description

Atomicity All operations in a transaction are completed or none

Consistency Data remains in a valid state

Property Description

Isolation Transactions do not interfere with each other

Durability Once committed, changes are permanent

🔶 13. Example: Simple Student Table

sql

CopyEdit

CREATE TABLE Students (

 RollNo INT PRIMARY KEY,

 Name VARCHAR(50),

 Course VARCHAR(30),

 Marks INT

);

INSERT INTO Students VALUES (101, 'Alice', 'DBMS', 85);

SELECT * FROM Students;

🔶 14. Popular DBMS Software

 MySQL (Open Source, Relational)

 Oracle (Enterprise RDBMS)

 Microsoft SQL Server (Windows RDBMS)

 PostgreSQL (Open Source, Object-relational)

 MongoDB (NoSQL, Document-based)

2. File system vs DBMS in dbms give detailed notes

✅ 1. What is a File System?

A file system is a method of storing and organizing files on a storage medium like hard

disks. Data is managed through files created manually using programming languages (e.g.,

C, C++, Java).

🔹 Characteristics:

 Data is stored in files (.txt, .csv, etc.)

 Access is done via custom application code

 No direct support for transactions, concurrency, or data integrity

✅ 2. What is a DBMS?

A Database Management System (DBMS) is software that helps in storing, managing,

and retrieving structured data in databases, using a standard language like SQL.

🔹 Characteristics:

 Data is stored in tables (relations)

 Supports querying, data integrity, and multi-user access

 Maintains ACID properties for transactions

✅ 3. Key Differences Between File System and DBMS

Feature File System DBMS

Data Storage

Format
Data stored in flat files Data stored in structured tables

Data Redundancy High redundancy
Controlled redundancy via

normalization

Data Consistency Difficult to ensure Ensured with integrity constraints

Data Security Limited access control Granular user access and encryption

Concurrency

Control
Not handled well

Handled efficiently with locking

mechanisms

Data Integrity
Must be manually

implemented
Built-in support using constraints

Backup & Recovery Manual and complex Automated backup and recovery tools

Transaction

Support
Not supported Fully supported (ACID properties)

Querying Language No standard query language SQL for data manipulation and retrieval

Scalability Limited Highly scalable for large databases

Data Relationships Hard to manage
Easily managed using keys and

constraints

Cost Low initial cost Higher setup cost but more powerful

Examples Text files, CSV files
MySQL, Oracle, PostgreSQL,

MongoDB

✅ 4. Example: Student Records

🔸 In File System:

Data is stored manually in a .txt or .csv file:

CopyEdit

101, Alice, CS, 85

102, Bob, IT, 90

 Updating or querying specific students requires manual coding.

🔸 In DBMS:

Data is stored in a structured table:

sql

CopyEdit

CREATE TABLE Students (

 RollNo INT PRIMARY KEY,

 Name VARCHAR(50),

 Course VARCHAR(30),

 Marks INT

);

INSERT INTO Students VALUES (101, 'Alice', 'CS', 85);

SELECT * FROM Students WHERE Marks > 80;

 Easy to retrieve and update using SQL.

✅ 5. Limitations of File System

 No standardized query language

 No centralized control over data

 No multi-user support

 Error-prone and difficult to maintain in large applications

✅ 6. Advantages of DBMS over File System

Advantage Explanation

Less Redundancy Normalization eliminates duplicate data

Improved Integrity Constraints ensure valid and accurate data

Concurrent Access Multiple users can work simultaneously

Security & Authorization Roles and permissions safeguard sensitive data

Data Abstraction Users interact without knowing physical storage

Efficient Querying SQL simplifies data access and manipulation

✅ 7. When to Use What?

Situation Recommended System

Small application with simple data needs File System

Multi-user, large-scale enterprise system DBMS

Situation Recommended System

Needs data integrity and security DBMS

Quick scripts or temporary storage File System

✅ Conclusion

 File systems are suitable for simple data storage and small-scale applications.

 DBMS is the preferred choice for complex, secure, multi-user environments requiring

efficient data handling.

3.Advantages of DBMS

A DBMS (Database Management System) is a software suite that helps in efficient

storage, retrieval, and management of data. It resolves the limitations of traditional file

systems and offers several significant benefits.

✅ 1. Data Redundancy Control

🔹 Explanation:

In traditional file systems, the same data may be repeated in multiple files. DBMS minimizes

this redundancy by centralizing data storage and enabling data sharing.

🔹 Example:

In a file system, student address may be stored in multiple files (admission, examination, fee).

In DBMS, it is stored once in a Students table and referenced wherever needed.

✅ 2. Data Consistency

🔹 Explanation:

Reduced redundancy leads to improved consistency. If data is updated in one place, it

reflects everywhere.

🔹 Example:

If a student's name changes, updating it in the DBMS reflects across all modules (results, fee

records, etc.).

✅ 3. Data Integrity

🔹 Explanation:

DBMS uses constraints and rules to maintain data accuracy and validity.

🔹 Common Constraints:

 Primary Key – Ensures unique identification

 Foreign Key – Maintains referential integrity

 Check – Restricts values in a column

✅ 4. Data Security

🔹 Explanation:

DBMS allows access control through user authentication and authorization. Sensitive data is

protected from unauthorized access.

🔹 Example:

 Admin can access and modify all data

 Students may only view their records

✅ 5. Concurrent Access

🔹 Explanation:

Multiple users can access the database simultaneously without affecting each other's work.

DBMS handles this through locking and transaction control.

🔹 Example:

Two users booking tickets at the same time will not overwrite each other's transactions.

✅ 6. Data Abstraction

🔹 Explanation:

DBMS separates logical data structure from physical storage, enabling users to access data

without knowing how it is stored.

🔹 Levels:

 Physical Level – How data is stored

 Logical Level – What data is stored

 View Level – How data is presented

✅ 7. Backup and Recovery

🔹 Explanation:

DBMS provides automatic tools to create backups and restore data in case of failure (e.g.,

system crash or power outage).

🔹 Example:

A scheduled backup can help recover data lost during hardware failure.

✅ 8. Transaction Management (ACID Properties)

🔹 Explanation:

DBMS maintains ACID properties for reliable transactions:

 Atomicity – All or none execution

 Consistency – Valid data at all times

 Isolation – Independent transactions

 Durability – Changes remain after a commit

✅ 9. Reduced Application Development Time

🔹 Explanation:

With SQL and predefined operations, developers can manage data efficiently without

writing large volumes of code.

🔹 Example:

SELECT * FROM Employees WHERE Salary > 50000; retrieves data in one line, unlike

complex file handling in traditional systems.

✅ 10. Data Sharing

🔹 Explanation:

Centralized databases allow multiple departments or users to share data securely and

efficiently.

🔹 Example:

Sales and inventory departments accessing common product data from the same DB.

✅ 11. Scalability and Flexibility

🔹 Explanation:

Modern DBMSs are highly scalable to handle growing data and flexible to adapt to changing

requirements.

✅ 12. Improved Decision-Making

🔹 Explanation:

Reliable and well-organized data enables businesses to generate reports, analytics, and

insights for better decision-making.

🔹 Example:

Management dashboards pulling data from DBMS for monthly sales reports.

📝 Summary Table

Advantage Description

Data Redundancy Control Avoids duplication of data

Data Consistency Same data across all modules

Data Integrity Enforces valid and accurate data

Security User roles and permissions

Concurrent Access Multi-user environment

Abstraction Hides data storage complexity

Backup & Recovery Data protection in failures

Transaction Control Maintains data reliability

Faster Development SQL and tools simplify programming

Data Sharing Enables inter-departmental collaboration

Scalability Handles growing volumes of data

Better Decision Making Accurate data for business insights

🎓 Conclusion

The advantages of DBMS make it the backbone of data management in almost every

modern organization. It not only ensures the accuracy, availability, and security of data but

also supports powerful operations and applications.

4. Database architecture

✅ 1. What is Database Architecture?

Database architecture defines the logical and physical structure of a database system,

including how data is stored, accessed, and managed.

It describes the:

 Components of the database system

 Relationship between users and the system

 Levels of data abstraction

✅ 2. Types of Database Architecture

There are three major types of database architectures:

Architecture Type Description

1-Tier All operations occur on a single machine

Architecture Type Description

2-Tier Client-server architecture

3-Tier Middleware layer between client and server

✅ 3. 1-Tier Architecture

🔹 Description:

 The user interacts directly with the database.

 Mainly used for local applications or during development.

🔹 Example:

 Using MS Access on a standalone PC.

🔹 Features:

 Simple and fast

 Less secure and not scalable

✅ 4. 2-Tier Architecture

🔹 Description:

 Divides system into:

o Client: UI for user interaction

o Server: Hosts the database

 The application runs on the client and communicates directly with the database.

🔹 Example:

 Java or .NET applications connecting to MySQL or Oracle DB.

🔹 Features:

 Faster communication

 Tight coupling between client and server

 Limited scalability

✅ 5. 3-Tier Architecture

🔹 Description:

 Consists of three layers:

1. Presentation Tier (Client): User interface

2. Application Tier (Middleware): Business logic

3. Data Tier (Database Server): Database storage

🔹 Features:

 Highly scalable, secure, and maintainable

 Supports distributed applications

🔹 Example:

 Web applications using:

o Front-end (HTML/React)

o Back-end (Java/.NET/PHP)

o Database (MySQL/Oracle/PostgreSQL)

✅ 6. 3-Level Database Architecture (ANSI-SPARC

Model)

This model is defined by ANSI/SPARC to support data abstraction and independence.

🔹 The 3 levels:

Level Description

External Level User view (individual user perspective)

Conceptual Level Community view (overall logical structure of the database)

Internal Level Physical storage view (how data is stored on hardware)

🔸 a. External Level (View Level)

 Closest to end-users

 Multiple user-specific views possible

 Users only see relevant data

Example:

A student user may only see personal records, not fee details.

🔸 b. Conceptual Level (Logical Level)

 Defines logical structure: entities, relationships, constraints

 Hides physical storage details

 Single view for entire database

Example:

Defines the schema: Student(RollNo, Name, Course, Marks)

🔸 c. Internal Level (Physical Level)

 Describes how data is stored

 Includes indexes, data blocks, file structures

Example:

Data is stored in binary files on disk with indexing for fast access.

✅ 7. Data Independence

This architecture provides data independence, meaning changes in one level don’t affect

others:

Type Description

Logical Independence Changes in conceptual level don’t affect external views

Physical Independence Changes in internal level don’t affect conceptual schema

✅ 8. Diagram: 3-Level Database Architecture

pgsql

CopyEdit

+----------------------+

| External Level | ← User Views

+----------------------+

| Conceptual Level | ← Logical schema

+----------------------+

| Internal Level | ← Physical data storage

+----------------------+

✅ 9. Benefits of Layered Architecture

 Data Abstraction: Users interact with simplified views

 Security: Different views for different users

 Data Independence: Easy to make changes without affecting the system

 Modularity: Each layer can be developed or maintained independently

 Scalability: Especially in 3-tier architecture

📝 Summary Table: Types of Database Architecture

Type Tiers Usage Scalability Examples

1-Tier 1 (User + DB) Local apps, prototypes Low MS Access, SQLite

2-Tier Client + DB Enterprise apps Moderate Java + Oracle/MySQL

3-Tier Client + App + DB Web apps, cloud systems High React + Node.js + PostgreSQL

🎓 Conclusion

Database architecture plays a critical role in:

 System performance

 Security

 Maintainability

 Scalability

5.Data model

✅ 1. What is a Data Model?

A data model in a DBMS defines how data is logically structured, stored, and

manipulated. It serves as a blueprint for designing a database.

🔹 It provides:

 A framework to organize data

 Rules to define relationships

 Means for querying and updating data

✅ 2. Purpose of Data Models

 Describe data, data relationships, and constraints

 Enable data abstraction

 Facilitate database design

 Help maintain data consistency and integrity

✅ 3. Types of Data Models

Data models are mainly categorized into the following:

Category Data Model Types

High-Level (Conceptual) Entity-Relationship (ER) Model

Record-Based (Logical) Relational, Network, Hierarchical Models

Physical Model Describes actual data storage

Object-Based Model Object-Oriented Model

✅ 4. Entity-Relationship (ER) Model

🔹 Description:

 A high-level conceptual model

 Represents data as entities (objects) and relationships between them

🔹 Components:

Element Description Example

Entity Real-world object Student, Course

Attribute Property of an entity Name, Age

Relationship Association between entities Enrolled, Teaches

🔹 Diagram Example:

css

CopyEdit

[Student] ---Enrolled---> [Course]

✅ 5. Relational Data Model

🔹 Description:

 Most widely used model in modern DBMS

 Represents data in tables (relations)

 Each table has rows (tuples) and columns (attributes)

🔹 Example Table: Student

RollNo Name Age Course

101 Alice 20 B.Sc

102 Bob 21 BCA

🔹 Key Features:

 Uses primary key to identify records

 Foreign keys represent relationships between tables

 Manipulated using SQL

✅ 6. Hierarchical Data Model

🔹 Description:

 Data is organized in a tree-like structure

 Each parent can have multiple children, but each child has one parent

🔹 Example:

css

CopyEdit

[University]

 ├── [College of Science]

 │ ├── [Dept of Physics]

 │ └── [Dept of Chemistry]

🔹 Features:

 Fast for 1-to-many relationships

 Difficult to model complex relationships

 Used in legacy systems (e.g., IBM IMS)

✅ 7. Network Data Model

🔹 Description:

 Data is represented as records and relationships using a graph structure

 A child can have multiple parents

🔹 Example:

 Student enrolled in multiple courses

 Courses taught by multiple instructors

🔹 Features:

 More flexible than hierarchical

 Complex to implement and navigate

 Replaced by relational model in modern DBMS

✅ 8. Object-Oriented Data Model

🔹 Description:

 Combines database capabilities with object-oriented programming

 Data and its operations (methods) are stored together

🔹 Features:

 Supports inheritance, encapsulation, and polymorphism

 Good for applications like CAD, multimedia databases

✅ 9. Physical Data Model

🔹 Description:

 Describes how data is actually stored in memory (files, indexes, blocks)

 Focuses on performance and efficiency

🔹 Includes:

 File organization (heap, sorted, hash)

 Index structures (B-tree, hash index)

 Disk storage details

✅ 10. Comparison Table: Common Data Models

Model Structure Relationship Type Usage

ER Model Diagram-based Conceptual Database design

Relational Model
Tables

(Relations)
Logical

SQL-based DBMS (MySQL,

Oracle)

Hierarchical

Model
Tree 1-to-many Legacy systems

Network Model Graph Many-to-many Complex data with multiple links

Object-Oriented Objects
Real-world

mapping
Multimedia, CAD, OOP databases

Physical Model Files, Blocks Hardware-based Performance optimization

✅ 11. Advantages of Using Data Models

Benefit Explanation

Data Abstraction Hides complex details from users

Better Design Helps in structured database development

Improved Consistency Ensures data relationships are maintained

Standardization Enables use of SQL and design tools

Maintainability Easier to manage and update schemas

🎓 Conclusion

A data model is a critical component in the design and management of databases. The choice

of data model depends on:

 Type of data

 Application domain

 System requirements

Relational models dominate today, but object-oriented and conceptual models are also

important in modern applications.

6. Schema and instances

✅ **1. What is a Database Schema?

A schema is the logical structure or blueprint of a database.

It defines how data is organized and how the relations among them are associated.

🔹 Key Points:

 Specifies the structure of tables, relationships, constraints, views, indexes, etc.

 Defined using Data Definition Language (DDL) (e.g., CREATE, ALTER)

 Schema remains relatively static (changes rarely)

🔹 Example of a Schema:

sql

CopyEdit

CREATE TABLE Student (

 RollNo INT PRIMARY KEY,

 Name VARCHAR(50),

 Age INT,

 Course VARCHAR(30)

);

Here, Student is a table schema with columns RollNo, Name, Age, and Course.

🔹 Types of Schema:

Type Description

Physical Schema Describes how data is physically stored on disk

Logical Schema Describes tables, views, relationships, constraints (what users see)

External Schema Describes user-specific views (used in 3-level architecture)

✅ 2. What is an Instance in DBMS?

An instance of a database is the actual data stored in the database at a particular moment

in time.

🔹 Key Points:

 Represents the current state of the database

 Changes frequently as data is added, deleted, or modified

 Also called a snapshot of the database

🔹 Example:

For the Student table, an instance may look like:

RollNo Name Age Course

101 Alice 20 BCA

102 Bob 21 B.Sc

This table content is an instance of the Student schema.

✅ 3. Analogy: Schema vs. Instance

Analogy Schema Instance

Blueprint vs Building Blueprint of a building Actual building at a moment

Class vs Object (OOP) Class definition Object created from that class

Form vs Filled Form Blank form with labels Filled-in form with data

✅ 4. Schema vs. Instance – Key Differences

Feature Schema Instance

Definition Logical structure of the database Actual data in the database

Nature Static (changes rarely) Dynamic (changes frequently)

Language

Used
Defined using DDL

Modified using DML (e.g., INSERT,

UPDATE)

Example
Table definition with columns and

types
Actual rows in the table

Lifetime Exists as long as the database exists
Exists temporarily and changes over

time

✅ 5. Practical Scenario

🧱 Schema:

sql

CopyEdit

CREATE TABLE Product (

 ProductID INT,

 Name VARCHAR(50),

 Price DECIMAL(8,2)

);

📊 Instance:

ProductID Name Price

1 Laptop 55000.00

2 Smartphone 20000.00

The above records are instances of the Product schema.

✅ 6. Why Are Schema and Instance Important?

Importance of Schema Importance of Instance

Ensures database design consistency Shows real-time data in the database

Helps in validating data entries Affects performance and storage

Useful for data modeling and architecture Crucial for transactions and reporting

✅ 7. Visual Representation

pgsql

CopyEdit

 SCHEMA (Blueprint)

 ┌──────────────┐

 │ STUDENT │

 │──────────────│

 │ RollNo │

 │ Name │

 │ Age │

 │ Course │

 └──────────────┘

 INSTANCE (Snapshot at a time)

 ┌──────────────┐

 │ RollNo | Name│

 │ 101 | Ram │

 │ 102 | Rita│

 └──────────────┘

🎓 Conclusion

 A schema defines the structure of the database, while an instance represents the

current data.

 Understanding the distinction is crucial for database design, maintenance, and

operations.

7.Data independence

✅ 1. What is Data Independence?

Data Independence refers to the capacity to change the schema at one level of a database

system without altering the schema at the next higher level.

It allows the separation of data from the applications that use the data.

✅ 2. Levels of Database Architecture

Data independence is achieved through the three-schema architecture of a DBMS:

Level Description

External Level User views (subset of the database)

Logical Level Logical structure (tables, relationships)

Physical Level How data is stored (files, indexes, etc.)

✅ 3. Types of Data Independence

There are two main types:

🔹 A. Logical Data Independence

 The ability to change the logical schema (e.g., adding/removing tables, fields,

relationships) without changing the external views or application programs.

🧠 Example:

Adding a new column PhoneNumber to the Student table should not require changes to user

applications that don’t use this column.

✅ Benefits:

 Applications remain unaffected by structural changes

 Easier to evolve the database design

🔹 B. Physical Data Independence

 The ability to change the physical storage or data access methods without affecting

the logical structure of the database.

🧠 Example:

Changing the storage from sequential files to indexed files should not affect the logical view

of tables and relations.

✅ Benefits:

 Improved performance without disrupting applications

 Easier to implement optimizations and storage updates

✅ 4. Importance of Data Independence

Benefit Explanation

Maintainability Easier to make changes to the database design

Flexibility Application programs do not depend on data storage structure

Reduced Complexity Developers can focus on business logic instead of low-level details

Improved Data Security Data access can be controlled separately from data storage details

Better Evolution

Handling

Supports database evolution and changes over time without breaking

apps

✅ 5. Diagram: Data Independence and Schema Levels

pgsql

CopyEdit

 +-----------------------------+

 | External Level | → User Views

 +-----------------------------+

 ↑

 (Logical Data Independence)

 ↓

 +-----------------------------+

 | Logical Level | → Tables, Views, Constraints

 +-----------------------------+

 ↑

 (Physical Data Independence)

 ↓

 +-----------------------------+

 | Physical Level | → Storage, Indexes, Files

 +-----------------------------+

✅ 6. Example Scenario

Let’s say you have this table:

sql

CopyEdit

CREATE TABLE Employee (

 EmpID INT,

 Name VARCHAR(50),

 Salary INT

);

Logical Change:

You add a new column:

sql

CopyEdit

ALTER TABLE Employee ADD Department VARCHAR(30);

This should not affect user applications unless they use the new column → Logical Data

Independence.

Physical Change:

You move the table to a different storage device or use a new index → The application

remains unchanged → Physical Data Independence.

✅ 7. Challenges in Achieving Data Independence

 Logical Data Independence is harder to achieve than physical because:

o Applications often depend on logical schema (table names, field names)

o Queries need to be updated if schema changes are major

 Physical Data Independence is more commonly achieved and supported by modern

DBMSs.

✅ 8. Real-Life Analogy

Analogy Physical Independence Logical Independence

Reading a book Changing paper to Kindle Rewriting chapters but keeping summary unchanged

Analogy Physical Independence Logical Independence

Using a website Changing backend server Changing data fields shown

🎓 Conclusion

 Data independence ensures database flexibility, robustness, and ease of

maintenance.

 It is a key benefit of using a DBMS over traditional file systems.

 While physical independence is relatively easy to implement, logical independence

remains more challenging but essential.

8. Database languages

✅ 1. What are Database Languages?

Database languages are a set of commands and syntax used to define, manipulate, and

control data in a Database Management System (DBMS).

They enable users and applications to interact with the database efficiently.

✅ 2. Types of Database Languages

Language Type Purpose Examples of Commands

Data Definition Language

(DDL)

Define and modify database

structure
CREATE, ALTER, DROP

Data Manipulation Language

(DML)
Retrieve and manipulate data SELECT, INSERT, UPDATE,

DELETE

Data Control Language

(DCL)
Control access and permissions GRANT, REVOKE

Transaction Control

Language (TCL)

Manage transactions and their

execution
COMMIT, ROLLBACK,
SAVEPOINT

Query Language
Retrieve data based on

conditions
SELECT

✅ 3. Data Definition Language (DDL)

🔹 Purpose:

 Used to create, alter, and remove database objects like tables, indexes, views,

schemas, etc.

🔹 Common Commands:

Command Description Example

CREATE
Create a new table or database

object

CREATE TABLE Student (ID INT, Name

VARCHAR(20));

ALTER
Modify existing database

object
ALTER TABLE Student ADD Age INT;

DROP Delete tables or other objects DROP TABLE Student;

TRUNCATE
Remove all records from a

table
TRUNCATE TABLE Student;

✅ 4. Data Manipulation Language (DML)

🔹 Purpose:

 Used to retrieve, insert, update, and delete data from the database.

🔹 Common Commands:

Command Description Example

SELECT Retrieve data from tables SELECT * FROM Student WHERE Age > 18;

INSERT
Insert new rows into a

table

INSERT INTO Student VALUES (1, 'Alice',

20);

UPDATE Modify existing data UPDATE Student SET Age = 21 WHERE ID = 1;

DELETE Delete rows from a table DELETE FROM Student WHERE ID = 1;

✅ 5. Data Control Language (DCL)

🔹 Purpose:

 Used to grant or revoke user permissions on database objects.

🔹 Common Commands:

Command Description Example

GRANT Give user privileges GRANT SELECT ON Student TO user1;

REVOKE Remove user privileges REVOKE SELECT ON Student FROM user1;

✅ 6. Transaction Control Language (TCL)

🔹 Purpose:

 Manage transactions which are sequences of operations performed as a single unit.

🔹 Common Commands:

Command Description Example

COMMIT Save all changes made in the transaction COMMIT;

ROLLBACK
Undo changes made in the current

transaction
ROLLBACK;

SAVEPOINT
Set a point within a transaction to rollback

to
SAVEPOINT sp1;

SET

TRANSACTION Set transaction properties
SET TRANSACTION READ

ONLY;

✅ 7. Query Language

🔹 Purpose:

 Primarily used for data retrieval using the SELECT statement.

 Supports filtering, sorting, grouping, and joining data.

🔹 Example:

sql

CopyEdit

SELECT Name, Age FROM Student WHERE Age > 18 ORDER BY Age DESC;

✅ 8. Summary Table of Database Languages

Language Type Main Function Common Commands

DDL Define database structure CREATE, ALTER, DROP, TRUNCATE

DML Manipulate data SELECT, INSERT, UPDATE, DELETE

DCL Manage permissions GRANT, REVOKE

TCL Manage transactions COMMIT, ROLLBACK, SAVEPOINT

Query Language Retrieve data SELECT

✅ 9. Importance of Database Languages

 Allow precise definition and manipulation of data

 Facilitate user and application interaction with DBMS

 Help in maintaining security and data integrity

 Manage concurrent access and transactions

🎓 Conclusion

Database languages are essential for defining, querying, updating, controlling access, and

managing transactions in a database system. Understanding each type and its commands is

crucial for effective DBMS use.

9. Database users and administrators

✅ 1. Introduction

In a Database Management System (DBMS), different people interact with the database

system with different roles and responsibilities. These roles are broadly classified as

database users and database administrators.

✅ 2. Types of Database Users

Database users are categorized based on their interaction with the database, technical

knowledge, and tasks they perform.

🔹 A. Types of Users

User Type Description Interaction Level

1. Casual Users

Access database

occasionally using high-level

queries

Use query languages (e.g., SQL) to

retrieve data but don’t perform frequent

transactions.

2. Naive or

Parametric Users

Use pre-written programs or

interfaces to perform

repetitive tasks

Rely on application programs; do not

write queries themselves. Example: bank

clerks, reservation clerks.

3. Sophisticated

Users

Use advanced tools or

database interfaces to

develop applications

Write complex queries, generate reports,

analyze data. Examples: engineers,

scientists.

4. Application

Programmers

Write application programs

that interact with the

database

Develop programs using embedded SQL

or API calls.

✅ 3. Roles of Database Users

User Type Main Roles and Responsibilities

Casual Users Query data, generate reports

Naive Users Use pre-defined interfaces and application software

Sophisticated Users Develop queries and perform data analysis

Application Programmers Develop application software integrating DB access

✅ 4. Database Administrator (DBA)

The Database Administrator (DBA) is a key role responsible for managing the DBMS and

ensuring smooth operation of the database system.

🔹 Responsibilities:

 Schema definition and modification: Creating and maintaining database structure.

 Granting and revoking access rights: Manage user permissions for security.

 Data security and integrity: Protect database from unauthorized access and ensure

accuracy.

 Backup and recovery: Plan and implement backup procedures; recover data after

failures.

 Performance monitoring and tuning: Optimize queries and database performance.

 Concurrency control: Manage simultaneous data access to prevent conflicts.

 Database maintenance: Routine checks, updates, and reorganizations.

 User training and support: Assist users in efficient database usage.

✅ 5. Other Roles Related to DBMS

Role Description

System Analyst
Designs the database system and translates user requirements into

specifications

Database

Designers

Create the database schema and design the logical and physical

structure

End Users
Use the database applications for their daily operations (could be naive,

casual, or sophisticated users)

Application

Developers
Develop software applications that use the database

✅ 6. Summary Table

Role Responsibilities Example

Database Administrator

(DBA)

Overall management, security, backup,

performance

Database manager in a

company

Casual User Occasional query and data retrieval Marketing analyst

Naive User
Use predefined programs to access

data

Bank teller using banking

software

Sophisticated User
Complex queries, reporting, data

analysis
Data scientist

Application

Programmer
Develop database applications Software developer

✅ 7. Why is Role Differentiation Important?

 Security: Limit access based on user role to protect sensitive data.

 Efficiency: Users work at appropriate levels without overloading the system.

 Maintenance: Clear responsibilities for database upkeep.

 User convenience: Tailored interfaces and tools for different user types.

🎓 Conclusion

Understanding the types of database users and their roles helps in designing better access

controls, improving security, and ensuring efficient use of the DBMS. The Database

Administrator (DBA) plays a crucial role in managing and securing the database system.

10. Data Dictionary?

✅ 1. What is a Data Dictionary?

A Data Dictionary (also called a metadata repository) is a centralized repository that stores

metadata — data about data.

It contains information describing the structure, constraints, and usage of the data stored in

the database.

✅ 2. Purpose of Data Dictionary

 Acts as a reference for the DBMS and users to understand the database schema and

properties.

 Helps in database design, implementation, and maintenance.

 Ensures data consistency and integrity by enforcing definitions.

 Facilitates query optimization and security management.

 Enables automatic validation of data types, constraints, and access rights.

✅ 3. Contents of Data Dictionary

Type of Information Examples

Database schema information Table names, column names, data types

Constraints Primary keys, foreign keys, unique constraints

User information Usernames, roles, access permissions

Storage information File locations, indexing methods

Relationships between tables Foreign key references

Triggers and stored procedures Names and definitions

Statistics Number of tuples, index usage stats

✅ 4. Types of Data Dictionaries

🔹 A. Active Data Dictionary

 Integrated into the DBMS.

 Automatically updated by the DBMS whenever the database structure changes.

 Used directly by the DBMS for query optimization, constraint enforcement, etc.

 Example: Oracle’s data dictionary.

🔹 B. Passive Data Dictionary

 Maintained manually by the database administrators.

 Not automatically updated by the DBMS.

 Used mainly for documentation purposes.

 Changes to the database require manual updates to this dictionary.

✅ 5. Functions of Data Dictionary

Function Description

Metadata storage Stores definitions of all database objects

Integrity enforcement Checks constraints and rules during data manipulation

Access control Stores permissions for users and roles

Query optimization Provides statistics and schema info to the query processor

Database design aid Assists designers and developers in understanding the database structure

Consistency checking Ensures all users have consistent views of the data

✅ 6. Example of Data Dictionary Entries

Table Name Column Name Data Type Constraint Description

Employee EmpID INT PRIMARY KEY Unique employee identifier

Employee Name VARCHAR(50) NOT NULL Employee’s full name

Employee DeptID INT FOREIGN KEY References Department table

✅ 7. Importance of Data Dictionary

 Acts as a central catalog that helps DBMS manage and control the database.

 Facilitates automated processing and reduces human errors.

 Helps maintain data integrity and consistency.

 Enables easier database administration and troubleshooting.

 Supports database documentation and standardization.

✅ 8. Summary Table

Feature Description

Location Stored within the DBMS or externally

Automatic updates Only in active data dictionaries

Users DBMS, database administrators, developers, end users

Role in DBMS Metadata management, integrity, access control, query optimization

🎓 Conclusion

The data dictionary is a crucial component of a DBMS, serving as a metadata repository

that stores all necessary information about the database structure, constraints, users, and

usage. It supports the DBMS in managing data efficiently, ensuring integrity, security, and

providing a valuable resource for users and developers.

11.Entity-Relationship Model: Entities, attributes, relationships, keys, E-R

diagram.

The Entity-Relationship Model (ER Model) is a conceptual model for
designing a databases. This model represents the logical structure of a
database, including entities, their attributes and relationships between
them.
 Entity: An objects that is stored as data such

as Student, Course or Company.
 Attribute: Properties that describes an entity such

as StudentID, CourseName, or EmployeeEmail.
 Relationship: A connection between entities such as

"a Student enrolls in a Course".



Components of ER Diagram

The graphical representation of this model is called an Entity-Relation
Diagram (ERD).

ER Model in Database Design Process
We typically follow the below steps for designing a database for an
application.

https://www.geeksforgeeks.org/how-to-draw-entity-relationship-diagrams/
https://www.geeksforgeeks.org/how-to-draw-entity-relationship-diagrams/

 Gather the requirements (functional and data) by asking questions to
the database users.

 Create a logical or conceptual design of the database. This is where
ER model plays a role. It is the most used graphical representation of
the conceptual design of a database.

 After this, focus on Physical Database Design (like indexing) and
external design (like views)

Why Use ER Diagrams In DBMS?
 ER diagrams represent the E-R model in a database, making them

easy to convert into relations (tables).
 These diagrams serve the purpose of real-world modeling of objects

which makes them intently useful.
 Unlike technical schemas, ER diagrams require no technical

knowledge of the underlying DBMS used.
 They visually model data and its relationships, making complex

systems easier to understand.

Symbols Used in ER Model
ER Model is used to model the logical view of the system from a data
perspective which consists of these symbols:
 Rectangles: Rectangles represent entities in the ER Model.
 Ellipses: Ellipses represent attributes in the ER Model.
 Diamond: Diamonds represent relationships among Entities.
 Lines: Lines represent attributes to entities and entity sets with other

relationship types.
 Double Ellipse: Double ellipses represent multi-valued Attributes,

such as a student's multiple phone numbers
 Double Rectangle: Represents weak entities, which depend on other

entities for identification.



Symbols used in ER Diagram

What is an Entity?
An Entity represents a real-world object, concept or thing about which data
is stored in a database. It act as a building block of a database. Tables in
relational database represent these entities.
Example of entities:
 Real-World Objects: Person, Car, Employee etc.
 Concepts: Course, Event, Reservation etc.
 Things: Product, Document, Device etc.
The entity type defines the structure of an entity, while individual instances
of that type represent specific entities.

What is an Entity Set?
An entity refers to an individual object of an entity type, and the collection
of all entities of a particular type is called an entity set. For example, E1 is
an entity that belongs to the entity type "Student," and the group of all
students forms the entity set.
In the ER diagram below, the entity type is represented as:

Entity Set

We can represent the entity sets in an ER Diagram but we can't represent
individual entities because an entity is like a row in a table, and an ER
diagram shows the structure and relationships of data, not specific data
entries (like rows and columns). An ER diagram is a visual representation
of the data model, not the actual data itself.

Types of Entity
There are two main types of entities:

1. Strong Entity
A Strong Entity is a type of entity that has a key Attribute that can uniquely
identify each instance of the entity. A Strong Entity does not depend on any
other Entity in the Schema for its identification. It has a primary key that
ensures its uniqueness and is represented by a rectangle in an ER diagram.

2. Weak Entity

https://www.geeksforgeeks.org/difference-between-strong-and-weak-entity/

A Weak Entity cannot be uniquely identified by its own attributes alone. It
depends on a strong entity to be identified. A weak entity is associated with
an identifying entity (strong entity), which helps in its identification. A weak
entity are represented by a double rectangle. The participation of weak
entity types is always total. The relationship between the weak entity type
and its identifying strong entity type is called identifying relationship and it
is represented by a double diamond.
Example:
A company may store the information of dependents (Parents, Children,
Spouse) of an Employee. But the dependents can't exist without the
employee. So dependent will be a Weak Entity Type and Employee will be
identifying entity type for dependent, which means it is Strong Entity Type.

Strong Entity and Weak Entity

Attributes in ER Model
Attributes are the properties that define the entity type. For example, for a
Student entity Roll_No, Name, DOB, Age, Address, and Mobile_No are the
attributes that define entity type Student. In ER diagram, the attribute is
represented by an oval.

Attribute

Types of Attributes
1. Key Attribute
The attribute which uniquely identifies each entity in the entity set is called
the key attribute. For example, Roll_No will be unique for each student. In
ER diagram, the key attribute is represented by an oval with an underline.

Key Attribute

https://www.geeksforgeeks.org/types-of-attributes-in-er-model/

2. Composite Attribute
An attribute composed of many other attributes is called a composite
attribute. For example, the Address attribute of the student Entity type
consists of Street, City, State, and Country. In ER diagram, the composite
attribute is represented by an oval comprising of ovals.

Composite Attribute

3. Multivalued Attribute
An attribute consisting of more than one value for a given entity. For
example, Phone_No (can be more than one for a given student). In ER
diagram, a multivalued attribute is represented by a double oval.

Multivalued Attribute

4. Derived Attribute
An attribute that can be derived from other attributes of the entity type is
known as a derived attribute. e.g.; Age (can be derived from DOB). In ER
diagram, the derived attribute is represented by a dashed oval.

Derived Attribute

The Complete Entity Type Student with its Attributes can be represented
as:

Entity and Attributes

Relationship Type and Relationship Set
A Relationship Type represents the association between entity types. For
example, ‘Enrolled in’ is a relationship type that exists between entity type
Student and Course. In ER diagram, the relationship type is represented by
a diamond and connecting the entities with lines.

Entity-

Relationship Set

A set of relationships of the same type is known as a relationship set. The
following relationship set depicts S1 as enrolled in C2, S2 as enrolled in C1,
and S3 as registered in C3.

Relationship Set

Degree of a Relationship Set
The number of different entity sets participating in a relationship set is called
the degree of a relationship set.
1. Unary Relationship: When there is only ONE entity set participating in
a relation, the relationship is called a unary relationship. For example, one
person is married to only one person.

Unary Relationship

2. Binary Relationship: When there are TWO entities set participating in
a relationship, the relationship is called a binary relationship. For example,
a Student is enrolled in a Course.

Binary

Relationship

3. Ternary Relationship: When there are three entity sets participating in
a relationship, the relationship is called a ternary relationship.
4. N-ary Relationship: When there are n entities set participating in a
relationship, the relationship is called an n-ary relationship.

Cardinality in ER Model
The maximum number of times an entity of an entity set participates in a
relationship set is known as cardinality.
Cardinality can be of different types:

1. One-to-One
When each entity in each entity set can take part only once in the
relationship, the cardinality is one-to-one. Let us assume that a male can
marry one female and a female can marry one male. So the relationship will
be one-to-one.

https://www.geeksforgeeks.org/degree-of-relations-in-dbms/
https://www.geeksforgeeks.org/cardinality-in-dbms/

One to

One Cardinality

Using Sets, it can be represented as:

Set Representation of One-to-One

2. One-to-Many
In one-to-many mapping as well where each entity can be related to more
than one entity. Let us assume that one surgeon department can
accommodate many doctors. So the Cardinality will be 1 to M. It means one
department has many Doctors.

one to

many cardinality

Using sets, one-to-many cardinality can be represented as:
Set Representation of One-to-Many

4. Many-to-One



When entities in one entity set can take part only once in the relationship
set and entities in other entity sets can take part more than once in the
relationship set, cardinality is many to one.
Let us assume that a student can take only one course but one course can
be taken by many students. So the cardinality will be n to 1. It means that
for one course there can be n students but for one student, there will be
only one course.

many to one cardinality

Using Sets, it can be represented as:

Set Representation of Many-to-One

In this case, each student is taking only 1 course but 1 course has been
taken by many students.

4. Many-to-Many
When entities in all entity sets can take part more than once in the
relationship cardinality is many to many. Let us assume that a student can

take more than one course and one course can be taken by many students.
So the relationship will be many to many.

many to many cardinality

Using Sets, it can be represented as:

Many-to-Many Set Representation

In this example, student S1 is enrolled in C1 and C3 and Course C3 is
enrolled by S1, S3, and S4. So it is many-to-many relationships.

Participation Constraint
Participation Constraint is applied to the entity participating in the
relationship set.
1. Total Participation: Each entity in the entity set must participate in the
relationship. If each student must enroll in a course, the participation of
students will be total. Total participation is shown by a double line in the ER
diagram.
2. Partial Participation: The entity in the entity set may or may NOT
participate in the relationship. If some courses are not enrolled by any of
the students, the participation in the course will be partial.

The diagram depicts the ‘Enrolled in’ relationship set with Student Entity set
having total participation and Course Entity set having partial participation.

https://www.geeksforgeeks.org/structural-constraints-of-relationships-in-er-model/

Total Participation and Partial Participation

Using Set, it can be represented as,

Set representation of

Total Participation and Partial Participation

Every student in the Student Entity set participates in a relationship but
there exists a course C4 that is not taking part in the relationship.

Unit-II

📘 Relational Model in DBMS

🔷 Definition

The Relational Model was proposed by E.F. Codd in 1970. It is a method of structuring data

using relations, i.e., tables. Each relation (or table) is a collection of tuples (rows) and

attributes (columns).

🔷 Key Terminologies

Term Description

Relation A table with rows and columns.

Tuple A single row in a table, representing a record.

Attribute A column in the table, representing a data field.

Domain The set of allowable values for an attribute.

Relation Schema Defines the name of the relation and its attributes.

Degree The number of attributes (columns) in a relation.

Cardinality The number of tuples (rows) in a relation.

Primary Key An attribute or set of attributes that uniquely identifies each tuple.

Foreign Key An attribute that refers to the primary key of another relation.

🔷 Structure of a Relation

Example:

plaintext

CopyEdit

STUDENT (Roll_No, Name, Age, Course)

+---------+--------+-----+--------+

| Roll_No | Name | Age | Course |

+---------+--------+-----+--------+

| 101 | Alice | 21 | CS |

| 102 | Bob | 22 | IT |

| 103 | Carol | 20 | CS |

+---------+--------+-----+--------+

🔷 Features of Relational Model

 Simple structure: Based on tables (relations).

 Data Independence: Logical and physical data are separate.

 Use of Keys: Ensures data integrity and avoids duplication.

 Declarative Querying: SQL is used to manipulate and retrieve data.

 Normalization: Eliminates redundancy and maintains consistency.

🔷 Relational Integrity Constraints

1. Domain Constraint
o Each attribute must hold values from its defined domain.

o Example: Age must be an integer between 0 and 150.

2. Entity Integrity Constraint

o The primary key must be unique and not null.

o Ensures that each record can be uniquely identified.

3. Referential Integrity Constraint
o A foreign key must match a primary key in another table or be null.

o Maintains consistency across related tables.

🔷 Advantages of Relational Model

 Ease of use: Intuitive tabular format.

 Flexibility: Easy to add, delete, or modify records.

 Powerful query capabilities: Supports SQL.

 Data integrity and accuracy: Through constraints and keys.

 Security: Can define access privileges.

🔷 Disadvantages

 Performance Issues: For large and complex databases, it may be slower.

 Complexity in Relationships: Handling many-to-many or recursive relationships

may be complex.

 Requires Normalization: To avoid redundancy, which may make design more

complex.

🔷 Relational Algebra and SQL

Relational model supports theoretical query languages like:

 Relational Algebra: A procedural query language (e.g., select, project, join).

 SQL (Structured Query Language): A standard language to query and manipulate

relational databases.

🔷 Normalization in Relational Model

Normalization is the process of organizing data to:

 Minimize redundancy.

 Improve data integrity.

Common normal forms:

 1NF (First Normal Form)

 2NF (Second Normal Form)

 3NF (Third Normal Form)

 BCNF (Boyce-Codd Normal Form)

🔷 Real-life Applications

 Banking systems

 Airline reservation systems

 E-commerce platforms

 University student databases

🔷 Example Queries (SQL)

sql

CopyEdit

-- Create a table

CREATE TABLE Student (

 Roll_No INT PRIMARY KEY,

 Name VARCHAR(50),

 Age INT,

 Course VARCHAR(30)

);

-- Insert data

INSERT INTO Student VALUES (101, 'Alice', 21, 'CS');

-- Select data

SELECT * FROM Student WHERE Course = 'CS';

2.Relational Algebra

Relational Algebra in DBMS

🔷 Definition

Relational Algebra is a procedural query language in DBMS. It provides a set of

operations to manipulate and retrieve data from relational databases.

 Introduced by E.F. Codd.

 Takes one or more relations (tables) as input and produces a new relation as output.

 Used as a foundation for SQL and query optimization.

🔷 Types of Relational Algebra Operations

Relational Algebra operations are broadly classified into:

1. Basic Operations (Set-oriented)

2. Special/Advanced Operations (Relational-specific)

🔹 1. Basic Set Operations

These are similar to operations in set theory.

Operation Symbol Description

Union ∪ Combines tuples from two relations (no duplicates).

Set Difference − Returns tuples in one relation but not in the other.

Intersection ∩ Returns tuples present in both relations.

Cartesian Product × Pairs each tuple of one relation with every tuple of another.

Rename ρ (rho) Renames the relation or attributes.

Note: For set operations like union, difference, and intersection to work, the relations must

be union-compatible:

 Same number of attributes.

 Corresponding attributes must have the same domain.

🔹 2. Relational Operations (Core operations)

Operation Symbol Description

Select σ (sigma) Selects rows (tuples) that satisfy a condition.

Operation Symbol Description

Project π (pi) Selects specific columns (attributes).

Join ⨝ (bowtie) Combines tuples from two relations based on a condition.

Division ÷ Finds tuples related to all tuples in another relation.

🔷 Detailed Explanation of Each Operation

1. Select (σ)

 Filters rows based on a predicate.

 Notation: σ<condition>(Relation)

 Example:

scss

CopyEdit

σAge > 18 (Student)

Returns students older than 18.

2. Project (π)

 Selects specific attributes (columns).

 Removes duplicates.

 Notation: π<attribute_list>(Relation)

 Example:

scss

CopyEdit

πName, Course (Student)

3. Union (∪)

 Combines tuples from two relations.

 Removes duplicates.

 Example:

nginx

CopyEdit

Student1 ∪ Student2

4. Set Difference (−)

 Returns tuples in one relation but not in another.

 Example:

nginx

CopyEdit

Student1 − Student2

5. Cartesian Product (×)

 Combines every tuple from the first relation with every tuple from the second.

 Example:

nginx

CopyEdit

Student × Course

6. Rename (ρ)

 Renames a relation or its attributes.

 Notation: ρNewName(Relation) or ρ(NewName(A1, A2, ...))(Relation)

 Example:

scss

CopyEdit

ρS(Student)

7. Join (⨝)

Combines related tuples from two relations.

Types of Join:

 Theta Join (θ Join): R ⨝<condition> S

 Equi Join: Theta join with only equality conditions.

 Natural Join (⨝): Joins on all common attributes.

 Outer Join: Includes unmatched tuples (left, right, full).

Example:

nginx

CopyEdit

Student ⨝ Student.Course = Course.Course_ID Course

8. Division (÷)

 Used when we want tuples from one relation that are associated with all tuples of

another relation.

Example:

css

CopyEdit

A ÷ B

Returns tuples in A that are related to every tuple in B.

🔷 Relational Algebra Query Example

Given:

plaintext

CopyEdit

STUDENT(RollNo, Name, Age, Course)

COURSE(CourseID, CourseName)

Q: Find names of students enrolled in ‘CS’ course.

Step 1: Select tuples where Course = 'CS':

bash

CopyEdit

σCourse = 'CS' (STUDENT)

Step 2: Project only the names:

scss

CopyEdit

πName(σCourse = 'CS' (STUDENT))

🔷 Relational Algebra vs SQL

Relational Algebra SQL

Procedural query language Declarative query language

Specifies how to retrieve Specifies what to retrieve

Foundation for query engines User-level query language

🔷 Importance of Relational Algebra

 Forms the theoretical foundation for relational databases.

 Helps in query optimization.

 Important in database engine design.

 Used in compiler design and query planning.

3. Relational calculus

 Relational Calculus in DBMS

🔷 Definition

Relational Calculus is a non-procedural query language in DBMS. It specifies what to

retrieve rather than how to retrieve it, unlike relational algebra.

 Based on first-order predicate logic.

 Used to express queries declaratively.

 There are two types:

o Tuple Relational Calculus (TRC)

o Domain Relational Calculus (DRC)

Key Characteristics

Feature Description

Non-procedural Focuses on what to retrieve, not how.

Declarative logic Uses logical expressions to define queries.

Foundation for SQL SQL is influenced more by relational calculus than algebra.

1. Tuple Relational Calculus (TRC)

✅ Syntax

less

CopyEdit

{ t | P(t) }

 t is a tuple variable.

 P(t) is a predicate (logical condition).

 The result is a set of all t for which P(t) is true.

✅ Example

Given:

plaintext

CopyEdit

Student(RollNo, Name, Age, Course)

Q: Retrieve names of students older than 18.
pgsql

CopyEdit

{ t.Name | Student(t) ∧ t.Age > 18 }

✅ TRC Operators and Notations

Operator Meaning

∧ AND

∨ OR

¬ NOT

⇒ IMPLIES

∃ t There exists a tuple t

∀ t For all tuples t

=, <, >, ≤, ≥ Comparison operators

🔷 2. Domain Relational Calculus (DRC)

✅ Syntax

CopyEdit

{ <x1, x2, ..., xn> | P(x1, x2, ..., xn) }

 Each xi is a domain variable.

 P(...) is a predicate using domain variables.

 The result is a set of domain values satisfying the condition.

✅ Example

Q: Get names of students older than 18.
pgsql

CopyEdit

{ <Name> | ∃ RollNo ∃ Age ∃ Course (Student(RollNo, Name, Age, Course) ∧
Age > 18) }

✅ DRC vs TRC

Feature TRC DRC

Based on Tuples (rows) Domains (columns)

Variable type Tuple variable (e.g., t) Domain variables (e.g., x)

Output Tuple or tuple fields Set of domain values

Example Syntax `{ t P(t) }`

🔷 Safe Expressions in Relational Calculus

Relational calculus expressions must be safe, i.e., they must produce finite and meaningful

results.

❗ Unsafe Query Example:

nginx

CopyEdit

{ t | ¬Student(t) }

This expression tries to return all tuples not in the Student relation — which is undefined

(could be infinite).

🔷 Use of Quantifiers

Quantifier Symbol Meaning

Existential ∃ There exists at least one value

Universal ∀ For all values

✅ Example (with quantifier):

Retrieve students enrolled in every course:

r

CopyEdit

{ s | Student(s) ∧ ∀ c (Course(c) → Enrolled(s, c)) }

🔷 Relational Algebra vs. Relational Calculus

Feature Relational Algebra Relational Calculus

Type Procedural Non-Procedural

Focus How to retrieve data What data to retrieve

Closer to Programming model Logic-based model

Foundation for Query execution engine SQL query design

Complexity May be easier to optimize Harder to optimize automatically

🔷 Advantages of Relational Calculus

 Easier to express complex queries logically.

 More intuitive for users familiar with predicate logic.

 Influential in the development of SQL.

🔷 Limitations

 Not used directly in practice (SQL is used instead).

 Harder to optimize automatically.

 Queries must be safe to avoid infinite results.

📝 Summary

Topic Summary

What is it? A non-procedural way to query relational databases.

Main types Tuple Relational Calculus (TRC), Domain Relational Calculus (DRC)

Query style Logical and declarative

Relation to SQL Forms the theoretical basis of SQL

Common operators AND, OR, NOT, EXISTS (∃), FOR ALL (∀), comparison operators

Main concern Only safe expressions are useful in practice

4. Keys and Constraints

🔑 PART 1: KEYS IN DBMS

🔷 What is a Key?

A key is an attribute or a set of attributes that helps in uniquely identifying a tuple (row) in

a relation (table). Keys ensure uniqueness and help maintain data integrity.

✅ Types of Keys with Examples

1. Super Key

 Definition: A set of one or more attributes that uniquely identifies each tuple in a

table.

 Example:

plaintext

CopyEdit

Table: Student(RollNo, Name, Email)

Super keys: {RollNo}, {RollNo, Name}, {Email}

2. Candidate Key

 Definition: A minimal super key (no redundant attributes).

 Example:

plaintext

CopyEdit

Table: Student(RollNo, Email)

Candidate Keys: {RollNo}, {Email}

3. Primary Key

 Definition: A candidate key chosen to uniquely identify tuples in a table.

 Rules:

o Cannot be NULL

o Must be unique

 Example:

sql

CopyEdit

CREATE TABLE Student (

 RollNo INT PRIMARY KEY,

 Name VARCHAR(50),

 Email VARCHAR(100)

);

4. Alternate Key

 Definition: Candidate keys that are not selected as the primary key.

 Example:

If RollNo is the primary key, then Email is the alternate key.

5. Composite Key

 Definition: A key formed by combining two or more attributes to uniquely identify

a row.

 Example:

plaintext

CopyEdit

Table: Enrollment(StudentID, CourseID)

Composite Key: {StudentID, CourseID}

6. Foreign Key

 Definition: An attribute in one table that references the primary key in another

table.

 Used to establish relationships between tables.

 Example:

sql

CopyEdit

CREATE TABLE Course (

 CourseID INT PRIMARY KEY,

 CourseName VARCHAR(50)

);

CREATE TABLE Enrollment (

 StudentID INT,

 CourseID INT,

 FOREIGN KEY (CourseID) REFERENCES Course(CourseID)

);

7. Unique Key

 Definition: Ensures that all values in a column are unique, but allows one NULL

value.

 Example:

sql

CopyEdit

CREATE TABLE Users (

 UserID INT PRIMARY KEY,

 Email VARCHAR(100) UNIQUE

);

🧱 Key Comparison Table

Key Type Unique Null Allowed Example

Super Key ✅ ✅ / ❌ {RollNo}, {RollNo, Name}

Candidate Key ✅ ❌ {RollNo}, {Email}

Primary Key ✅ ❌ RollNo

Alternate Key ✅ ❌ Email (if not primary)

Composite Key ✅ ❌ (StudentID, CourseID)

Foreign Key ❌ ✅ CourseID (references Course)

Unique Key ✅ ✅ (only one) Email

🛡️ PART 2: CONSTRAINTS IN DBMS

🔷 What is a Constraint?

A constraint is a rule enforced on data in a database to ensure validity, accuracy, and

consistency.

✅ Types of Constraints with Examples

1. NOT NULL Constraint

 Ensures that a column cannot have NULL values.

 Example:

sql

CopyEdit

Name VARCHAR(50) NOT NULL

2. UNIQUE Constraint

 Ensures that all values in a column are different.

 Allows one NULL.

 Example:

sql

CopyEdit

Email VARCHAR(100) UNIQUE

3. PRIMARY KEY Constraint

 Combines NOT NULL and UNIQUE.

 Only one per table.

 Example:

sql

CopyEdit

RollNo INT PRIMARY KEY

4. FOREIGN KEY Constraint

 Maintains referential integrity by ensuring values match a primary key in another

table.

 Example:

sql

CopyEdit

FOREIGN KEY (CourseID) REFERENCES Course(CourseID)

5. CHECK Constraint

 Enforces a condition on the values in a column.

 Example:

sql

CopyEdit

Age INT CHECK (Age >= 18)

6. DEFAULT Constraint

 Assigns a default value if no value is provided.

 Example:

sql

CopyEdit

Status VARCHAR(10) DEFAULT 'Active'

📋 Full Table Example with Constraints

sql

CopyEdit

CREATE TABLE Student (

 RollNo INT PRIMARY KEY,

 Name VARCHAR(50) NOT NULL,

 Email VARCHAR(100) UNIQUE,

 Age INT CHECK (Age >= 18),

 CourseID INT,

 Status VARCHAR(10) DEFAULT 'Active',

 FOREIGN KEY (CourseID) REFERENCES Course(CourseID)

);

✅ Constraints Summary Table

Constraint Description Example

NOT NULL Value must not be NULL Name VARCHAR(50) NOT NULL

UNIQUE All values must be different Email VARCHAR(100) UNIQUE

PRIMARY

KEY
Unique + Not NULL RollNo INT PRIMARY KEY

FOREIGN KEY
Points to a primary key in another

table
FOREIGN KEY (CourseID)

CHECK Validates values with a condition Age INT CHECK (Age >= 18)

DEFAULT Sets default value if none provided
Status VARCHAR(10) DEFAULT

'Active'

🧱 Why Are Keys and Constraints Important?

Keys Constraints

Identify records uniquely Maintain data accuracy

Link related tables Prevent invalid data entries

Avoid duplication Enforce business rules

Optimize searching Keep relationships consistent

Normalization: 1NF, 2NF, 3NF, BCNF, 4NF, and 5NF

🔷 What is Normalization?

Normalization is the process of organizing data in a database to:

 Reduce data redundancy

 Eliminate anomalies (insertion, update, deletion)

 Improve data integrity

It involves dividing large tables into smaller, related ones and defining relationships

between them.

🧱 Types (Forms) of Normalization

✅ 1NF – First Normal Form

🔸 Rule:

 A relation is in 1NF if:

o All attributes contain only atomic (indivisible) values

o Each field contains only single values, not sets or arrays

🔸 Violation Example:

plaintext

CopyEdit

Student(RollNo, Name, Subjects)

101, John, {Math, Physics}

🔸 Conversion to 1NF:

plaintext

CopyEdit

Student(RollNo, Name, Subject)

101, John, Math

101, John, Physics

✅ 2NF – Second Normal Form

🔸 Rule:

 Must be in 1NF

 All non-prime attributes must be fully functionally dependent on the entire

primary key (no partial dependency)

🔸 Violation Example:

plaintext

CopyEdit

Table: Enrollment(StudentID, CourseID, StudentName)

Primary Key: (StudentID, CourseID)

Partial dependency: StudentName depends only on StudentID

🔸 Conversion to 2NF:

Split into:

plaintext

CopyEdit

Student(StudentID, StudentName)

Enrollment(StudentID, CourseID)

✅ 3NF – Third Normal Form

🔸 Rule:

 Must be in 2NF

 No transitive dependency (non-prime attribute depends on another non-prime

attribute)

🔸 Violation Example:

plaintext

CopyEdit

Table: Student(RollNo, Name, DeptID, DeptName)

Functional Dependencies:

RollNo → DeptID

DeptID → DeptName (transitive)

🔸 Conversion to 3NF:

plaintext

CopyEdit

Student(RollNo, Name, DeptID)

Department(DeptID, DeptName)

✅ BCNF – Boyce-Codd Normal Form

🔸 Rule:

 Must be in 3NF

 For every functional dependency X → Y, X should be a super key

🔸 Violation Example:

plaintext

CopyEdit

Table: Course(FacultyName, CourseCode)

FD: FacultyName → CourseCode

But FacultyName is not a super key (multiple faculties may teach same

course)

🔸 Conversion to BCNF:

plaintext

CopyEdit

FacultyCourse(FacultyName, CourseCode)

Ensure both are uniquely mapped by splitting based on FDs.

✅ 4NF – Fourth Normal Form

🔸 Rule:

 Must be in BCNF

 No multivalued dependencies

🔸 Violation Example:

plaintext

CopyEdit

Table: Student(StudentID, Hobby, Language)

Multivalued dependencies:

StudentID →→ Hobby

StudentID →→ Language

🔸 Conversion to 4NF:

plaintext

CopyEdit

StudentHobby(StudentID, Hobby)

StudentLanguage(StudentID, Language)

✅ 5NF – Fifth Normal Form / PJ/NF (Project-Join

Normal Form)

🔸 Rule:

 Must be in 4NF

 No join dependency that cannot be enforced via candidate keys

🔸 Violation Example:

plaintext

CopyEdit

Table: Project(ProjectID, SupplierID, PartID)

Project can have many suppliers and parts independently, leading to

redundancy

🔸 Conversion to 5NF:

Break into three relations:

plaintext

CopyEdit

ProjectSupplier(ProjectID, SupplierID)

ProjectPart(ProjectID, PartID)

SupplierPart(SupplierID, PartID)

🧱 Summary Table

Normal

Form
Rule Summary Eliminates Example Fix

1NF Atomic values only Repeating groups
Split multi-valued fields into

multiple rows

2NF No partial dependency
Partial

dependencies

Separate dependent attributes

to another table

3NF No transitive dependency
Transitive

dependencies

Use separate tables for

indirectly dependent data

BCNF
Every determinant is a super

key

Anomalies from

3NF

Decompose using super key-

based FD

4NF
No multivalued

dependencies

Redundancy from

MVDs

Split into separate one-to-

many tables

5NF
No join dependency without

candidate key

Redundancy from

joins

Decompose to smaller

relations

💡 Why Normalize?

Benefit Explanation

Data Integrity Prevents anomalies

Reduced Redundancy Less repetition, more efficient storage

Easier Maintenance Modular schema, changes easier to manage

Better Performance Smaller tables = faster queries (usually)

🔚 Conclusion

Normalization is a foundational concept in DBMS that ensures:

 Proper data organization

 Efficient querying

 Reduced storage overhead

 Data consistency across operations

Functional dependencies

🔷 What is a Functional Dependency?

A Functional Dependency (FD) is a constraint between two sets of attributes in a relation

from a database.

 It describes the relationship between attributes.

 If attribute A functionally determines attribute B (written as A → B), then for each

value of A, there is exactly one value of B.

✅ Formal Definition

Let R be a relation and X and Y be subsets of attributes in R.

We say X → Y (X functionally determines Y) if:

For any two tuples t1 and t2 in R, if t1[X] = t2[X], then t1[Y] = t2[Y]

🎯 Example of Functional Dependency

Consider a table Student(RollNo, Name, Dept):

 If each RollNo is unique, then:

nginx

CopyEdit

RollNo → Name

RollNo → Dept

Because if two students have the same RollNo, they must have the same Name and Dept.

🧱 Types of Functional Dependencies

1. Trivial Functional Dependency

 If Y ⊆ X, then X → Y is trivial.

 Always holds.

 Example:

pgsql

CopyEdit

{RollNo, Name} → RollNo

2. Non-Trivial Functional Dependency

 If Y ⊄ X, then X → Y is non-trivial.

 Example:

nginx

CopyEdit

RollNo → Name

3. Completely Non-Trivial Dependency

 If X and Y have no common attributes, then it is completely non-trivial.

 Example:

scss

CopyEdit

RollNo → Dept (RollNo and Dept are disjoint)

4. Partial Dependency

 When a non-prime attribute is functionally dependent on part of a composite key.

 Violates 2NF.

 Example:

scss

CopyEdit

(StudentID, CourseID) → StudentName

5. Transitive Dependency

 If X → Y and Y → Z, then X → Z.

 Violates 3NF.

 Example:

nginx

CopyEdit

RollNo → DeptID

DeptID → DeptName

⇒ RollNo → DeptName

6. Multivalued Dependency (MVD)

 When one attribute in a table uniquely determines another attribute independently of

others.

 Related to 4NF.

 Example:

sql

CopyEdit

StudentID →→ Hobby

StudentID →→ Language

🛠️ How to Identify Functional Dependencies

Use real-world logic and common sense:

Attribute(s) Can Determine Reason

EmployeeID Name, Dept ID is unique per employee

DeptID DeptName Each department has one name

CourseCode CourseName Code maps to only one name

📋 Notation and Symbols

 X → Y: X functionally determines Y

 + (Closure): X⁺ is the set of attributes functionally determined by X

 FD Set: A collection of FDs over a relation

📚 Example Table and Functional Dependencies

plaintext

CopyEdit

Table: Employee(EmpID, Name, DeptID, DeptName, Salary)

FDs:

EmpID → Name, DeptID, Salary

DeptID → DeptName

Here,

 EmpID uniquely identifies Name, DeptID, Salary

 DeptID determines DeptName

🧱 Attribute Closure (X⁺)

Used to find all attributes functionally determined by a set X.

Example:

Given:

makefile

CopyEdit

FDs:

A → B

B → C

Then:

mathematica

CopyEdit

A⁺ = {A, B, C}

⚙️ Uses of Functional Dependencies

1. Normalization (2NF, 3NF, BCNF)

2. Decomposition of tables

3. Lossless joins

4. Designing relational schemas

5. Checking redundancy and anomalies

📌 Armstrong’s Axioms (Inference Rules)

Used to infer all functional dependencies logically from a given set.

Axiom Rule Example

Reflexivity If Y ⊆ X, then X → Y {A, B} → A

Augmentation If X → Y, then XZ → YZ A → B ⇒ AC → BC

Transitivity If X → Y and Y → Z, then X → Z A → B, B → C ⇒ A → C

Additional Rules (Derived):

 Union: X → Y and X → Z ⇒ X → YZ

 Decomposition: X → YZ ⇒ X → Y and X → Z

 Pseudotransitivity: If X → Y and YZ → W ⇒ XZ → W

✅ Example: Checking Normal Forms Using FDs

Table:

plaintext

CopyEdit

Student(RollNo, Name, DeptID, DeptName)

FDs:

1. RollNo → Name, DeptID

2. DeptID → DeptName

Analysis:

 Transitive Dependency: RollNo → DeptID and DeptID → DeptName ⇒ RollNo →

DeptName

 Violates 3NF

 Solution: Split into two tables:
o Student(RollNo, Name, DeptID)
o Department(DeptID, DeptName)

🔚 Summary

Term Meaning

Functional Dependency Attribute relationship based on uniqueness

X → Y X determines Y (one X → one Y)

Trivial FD Y ⊆ X

Non-trivial FD Y ⊄ X

Transitive Dependency X → Y, Y → Z ⇒ X → Z

Multivalued Dependency X →→ Y

Closure (X⁺) All attributes functionally determined by X

Armstrong’s Axioms Set of inference rules to derive FDs

Multivalued dependencies

🔷 What is a Multivalued Dependency?

A Multivalued Dependency (MVD) occurs in a relation when one attribute determines

multiple independent values of another attribute, separately from other attributes.

🔸 Formal Definition:

A multivalued dependency X →→ Y in a relation R means:

For each value of X, there is a set of values of Y that is independent of other attributes in

R.

✅ Notation:

 Written as: X →→ Y

 Read as: "X multivalued determines Y"

🔍 Example:

Table: Student(StudentID, Hobby, Language)

Sample Data:

StudentID Hobby Language

1 Reading English

1 Painting English

1 Reading Hindi

1 Painting Hindi

 Here, a student can have multiple hobbies and speak multiple languages, and both

are independent of each other.

 Therefore:

sql

CopyEdit

StudentID →→ Hobby

StudentID →→ Language

💡 Key Points:

Concept Explanation

Independence The multivalued attributes are not related to each other

MVD vs FD
In FD (X → Y), Y has only one value per X

In MVD (X →→ Y), Y can have multiple values for each X

Functional Dependency as MVD Every FD is also a MVD, but not every MVD is a FD

🧱 Properties of Multivalued Dependencies

1. Complementation:

If X →→ Y, then X →→ (R - X - Y)

(If X determines Y, it also determines everything else independent of Y)

2. Augmentation:

If X →→ Y and Z ⊆ R, then XZ →→ Y

3. Transitivity:

If X →→ Y and Y →→ Z, then X →→ Z (under certain conditions)

4. Replication:

If X → Y (a functional dependency), then X →→ Y

🚫 Anomalies Caused by MVDs

1. Insertion Anomaly

You can't add a hobby for a student without adding a language (even though they're

unrelated).

2. Deletion Anomaly

Deleting a language might unintentionally delete hobby info.

3. Update Anomaly

If a student has multiple entries, updating one value (e.g., hobby) may require updating all

matching rows.

✅ Eliminating MVDs – Use Fourth Normal Form (4NF)

🔸 Rule for 4NF:

A relation is in 4NF if:

 It is in Boyce-Codd Normal Form (BCNF)

 It does not have any non-trivial multivalued dependency

🔧 Conversion to 4NF – Decomposition Example:

From the earlier Student(StudentID, Hobby, Language):

❌ Not in 4NF:

Multivalued dependencies exist:

 StudentID →→ Hobby

 StudentID →→ Language

✅ 4NF Decomposition:

Split into two tables:

1. StudentHobby(StudentID, Hobby)

2. StudentLanguage(StudentID, Language)

Now:

 No multivalued dependencies

 No unnecessary duplication

 Fewer anomalies

📋 Another Example:

Table: Book(Title, Author, Genre)

Data:

Title Author Genre

DB Design C. J. Date Education

DB Design Silberschatz Education

DB Design C. J. Date Reference

DB Design Silberschatz Reference

MVDs:

 Title →→ Author
 Title →→ Genre

This indicates that:

 Each book has multiple authors

 Each book belongs to multiple genres

 Authors and genres are independent

Decompose to 4NF:

1. BookAuthor(Title, Author)

2. BookGenre(Title, Genre)

🧱 Summary Table

Concept Explanation

Multivalued Dependency One attribute determines multiple values of another, independently

Notation X →→ Y

Normal Form Eliminating

MVDs
4NF

Anomalies Removed
Insertion, Update, Deletion anomalies due to unrelated multivalued

data

Detection
Observe repeated combinations of values where the attributes are

unrelated

🔚 Conclusion

Multivalued dependencies are a critical concept in DBMS used to:

 Identify redundancies in a relation

 Guide decomposition for 4NF

 Prevent anomalies caused by unrelated data being stored together

🔷 What is Decomposition?

Decomposition is the process of splitting a relation (table) into two or more smaller

relations to:

 Eliminate redundancy

 Eliminate anomalies (insertion, deletion, update)

 Improve normalization

 Ensure data integrity

Goal: Break large, complex tables into simpler, more normalized ones without losing data

or meaning.

✅ Properties of a Good Decomposition

1. Lossless Join (or Non-lossy Decomposition)
→ No loss of information when decomposed relations are joined back.

2. Dependency Preservation
→ All functional dependencies in the original relation can still be enforced without

joining tables.

3. No Redundancy

→ Avoid duplicate/redundant data.

🔸 Why Decompose?

Problem Solution via Decomposition

Data redundancy Remove repeated data

Insertion anomaly Avoid inserting NULLs

Update anomaly Avoid updating in multiple rows

Deletion anomaly Avoid losing essential data

Violations of Normal Forms Convert to 1NF, 2NF, 3NF, etc.

🔍 Types of Decomposition

1. Lossless Join Decomposition

 Ensures no data is lost when joining decomposed relations.

 It’s essential for correctness.

2. Lossy Join Decomposition

 Some data is lost or added when decomposed relations are joined.

 Should be avoided in practice.

✅ Lossless Join – Formal Definition

A decomposition of relation R into R1 and R2 is lossless w.r.t. a set of functional

dependencies F if:

nginx

CopyEdit

R1 ⋈ R2 = R

That is, the natural join of R1 and R2 gives back the original relation.

🔐 Lossless Join Condition (Using Functional

Dependencies)

Let R be decomposed into R1 and R2. The decomposition is lossless if:

nginx

CopyEdit

R1 ∩ R2 → R1 OR R1 ∩ R2 → R2

That is, the common attributes must form a super key in at least one of the relations.

📚 Example – Lossless Join

Given relation:

plaintext

CopyEdit

Student(RollNo, Name, DeptID, DeptName)

Functional Dependencies:

markdown

CopyEdit

1. RollNo → Name, DeptID

2. DeptID → DeptName

Decomposition:

ini

CopyEdit

R1 = StudentInfo(RollNo, Name, DeptID)

R2 = Department(DeptID, DeptName)

Common attribute: DeptID

Check: Does DeptID → R2 (DeptID, DeptName)?

✅ Yes (DeptID → DeptName)

Hence, lossless decomposition.

❌ Example – Lossy Join

Given:

plaintext

CopyEdit

Employee(EmpID, EmpName, DeptID, DeptLocation)

Decompose into:

ini

CopyEdit

R1 = (EmpID, EmpName)

R2 = (DeptID, DeptLocation)

Common attributes: None

Join of R1 and R2 would create a Cartesian product → leads to spurious tuples

❌ This is a lossy decomposition.

🧱 Dependency Preservation

A decomposition is dependency preserving if:

 The functional dependencies in the original relation can still be enforced without

joining the decomposed relations.

Important for maintaining data integrity and simplifying constraint enforcement.

🎯 Summary Table

Term Meaning

Decomposition Splitting a relation into smaller ones

Lossless Join No data loss after decomposition and rejoining

Condition for Lossless R1 ∩ R2 → R1 OR R1 ∩ R2 → R2

Term Meaning

Lossy Join Causes information loss or incorrect tuples after join

Dependency Preservation All FDs still hold after decomposition

Natural Join Combines rows based on common attributes with equal values

🛠️ Real-World Example

Table: Orders(OrderID, CustomerID, CustomerName, ProductID, ProductName)

Functional Dependencies:

 OrderID → CustomerID, ProductID

 CustomerID → CustomerName

 ProductID → ProductName

Decompose into:

1. Orders(OrderID, CustomerID, ProductID)

2. Customer(CustomerID, CustomerName)

3. Product(ProductID, ProductName)

✅ All joins are lossless (keys preserved)

✅ All dependencies preserved

🔚 Conclusion

Decomposition is a key concept in relational design. For a successful decomposition, ensure:

1. Lossless join – to preserve original data

2. Dependency preservation – to retain all constraints

3. No redundancy – to avoid anomalies

Unit-III

SQL: DDL, DML, DCL, TCL

🔷 What is SQL?

SQL (Structured Query Language) is a standard language used to interact with relational

databases. It includes different categories of commands to create, manipulate, control, and

maintain database systems.

SQL commands are grouped into the following types:

Type Full Form Purpose

DDL Data Definition Language Defines database schema

DML Data Manipulation Language Manipulates data in tables

DCL Data Control Language Controls access to data

TCL Transaction Control Language Manages database transactions

🔶 1. Data Definition Language (DDL)

🔸 Purpose:

DDL is used to define, modify, and delete database schema objects like tables, views,

indexes, etc.

🧱 Common DDL Commands:

Command Description

CREATE Creates a new table or database object

ALTER Modifies an existing database object

DROP Deletes a database object

TRUNCATE Removes all rows from a table quickly

RENAME Renames a database object

✅ Examples:

sql

CopyEdit

-- Create a table

CREATE TABLE Students (

 ID INT PRIMARY KEY,

 Name VARCHAR(50),

 Age INT

);

-- Add a column

ALTER TABLE Students ADD Email VARCHAR(100);

-- Delete a table

DROP TABLE Students;

-- Remove all data (structure remains)

TRUNCATE TABLE Students;

-- Rename table

RENAME TABLE Students TO Learners;

🔷 2. Data Manipulation Language (DML)

🔸 Purpose:

DML is used to manipulate and retrieve data stored in database tables.

🧱 Common DML Commands:

Command Description

SELECT Retrieves data from one or more tables

INSERT Adds new data to a table

UPDATE Modifies existing data

DELETE Removes data from a table

✅ Examples:

sql

CopyEdit

-- Insert a record

INSERT INTO Students (ID, Name, Age) VALUES (1, 'John', 20);

-- Retrieve data

SELECT * FROM Students;

-- Update a record

UPDATE Students SET Age = 21 WHERE ID = 1;

-- Delete a record

DELETE FROM Students WHERE ID = 1;

🔷 3. Data Control Language (DCL)

🔸 Purpose:

DCL is used to control user access to the database and its objects.

🧱 Common DCL Commands:

Command Description

GRANT Gives privileges to users

REVOKE Removes privileges from users

✅ Examples:

sql

CopyEdit

-- Grant SELECT privilege

GRANT SELECT ON Students TO user1;

-- Revoke privilege

REVOKE SELECT ON Students FROM user1;

🔷 4. Transaction Control Language (TCL)

🔸 Purpose:

TCL manages transactions to ensure data integrity and consistency.

🧱 Common TCL Commands:

Command Description

COMMIT Saves all changes made by the transaction

ROLLBACK Undoes changes since the last COMMIT

SAVEPOINT Sets a point within a transaction

✅ Examples:

sql

CopyEdit

-- Start a transaction (implicit)

INSERT INTO Students VALUES (2, 'Alice', 22);

-- Set a savepoint

SAVEPOINT sp1;

-- Make another change

UPDATE Students SET Age = 23 WHERE ID = 2;

-- Rollback to savepoint

ROLLBACK TO sp1;

-- Commit changes

COMMIT;

📚 Summary Table

SQL

Type
Commands Function

DDL
CREATE, ALTER, DROP, TRUNCATE,

RENAME

Defines or changes structure of DB

objects

DML SELECT, INSERT, UPDATE, DELETE Manipulates data inside tables

DCL GRANT, REVOKE Manages user permissions

TCL COMMIT, ROLLBACK, SAVEPOINT
Controls changes and maintains

consistency

🧱 Key Points:

 DDL commands auto-commit changes (they are permanent immediately).

 DML commands can be rolled back if enclosed within a transaction.

 DCL and TCL help manage access control and consistency in multi-user

environments.

🧱 Practice Tip

Try combining commands:

sql

CopyEdit

-- Create table

CREATE TABLE Account(ID INT, Name VARCHAR(50), Balance DECIMAL);

-- Insert data and use transaction control

BEGIN;

INSERT INTO Account VALUES (101, 'Raj', 1000);

SAVEPOINT sp1;

UPDATE Account SET Balance = Balance - 200 WHERE ID = 101;

ROLLBACK TO sp1;

COMMIT;

🔚 Conclusion

Understanding SQL command categories is essential for database administration,

development, and query writing. Each type serves a unique purpose, and together they offer a

full-featured toolkit for managing relational databases.

Table creation, modification, and deletion

1️⃣ Table Creation

What is it?

Creating a table means defining a new table structure in the database to store data. This

includes specifying the table name, columns, data types, and constraints.

Syntax (Basic):

sql

CopyEdit

CREATE TABLE table_name (

 column1 datatype constraints,

 column2 datatype constraints,

 ...

);

Common Data Types:

 INT – Integer numbers

 VARCHAR(size) – Variable-length string

 CHAR(size) – Fixed-length string

 DATE – Date values

 FLOAT, DECIMAL – Floating-point numbers

Common Constraints:

 PRIMARY KEY – Uniquely identifies each row

 NOT NULL – Column cannot be NULL

 UNIQUE – Values must be unique

 CHECK – Ensures data meets a condition

 DEFAULT – Default value if none provided

 FOREIGN KEY – References another table's key

Example:

sql

CopyEdit

CREATE TABLE Students (

 StudentID INT PRIMARY KEY,

 Name VARCHAR(50) NOT NULL,

 Age INT CHECK (Age >= 18),

 Email VARCHAR(100) UNIQUE,

 EnrollmentDate DATE DEFAULT CURRENT_DATE

);

2️⃣ Table Modification

What is it?

Modifying a table means changing its structure after creation — adding, deleting, or changing

columns or constraints.

Using the ALTER TABLE command.

Common Modifications:

Operation Syntax Example Description

Add a column
ALTER TABLE table_name ADD column_name

datatype;
Adds a new column to the

table

Drop a column
ALTER TABLE table_name DROP COLUMN

column_name;
Removes a column from

the table

Modify a

column type

ALTER TABLE table_name MODIFY

column_name datatype;
Changes the data type of a

column

Rename a

column

ALTER TABLE table_name RENAME COLUMN

old_name TO new_name;
Renames a column

(DBMS dependent)

Add a

constraint

ALTER TABLE table_name ADD CONSTRAINT

constraint_name UNIQUE(column_name);

Adds constraints like

UNIQUE, FOREIGN

KEY, etc.

Examples:

 Add a new column

sql

CopyEdit

ALTER TABLE Students ADD Phone VARCHAR(15);

 Drop a column

sql

CopyEdit

ALTER TABLE Students DROP COLUMN Phone;

 Modify a column data type

sql

CopyEdit

ALTER TABLE Students MODIFY Age SMALLINT;

 Rename a column (syntax may vary)

sql

CopyEdit

ALTER TABLE Students RENAME COLUMN Email TO StudentEmail;

 Add a foreign key constraint

sql

CopyEdit

ALTER TABLE Students ADD CONSTRAINT fk_dept FOREIGN KEY (DeptID) REFERENCES

Departments(DeptID);

3️⃣ Table Deletion

What is it?

Deleting a table means permanently removing the entire table and all its data from the

database.

Syntax:

sql

CopyEdit

DROP TABLE table_name;

 This operation cannot be undone.

 It removes both the data and the table structure.

Example:

sql

CopyEdit

DROP TABLE Students;

4️⃣ Additional: Truncating a Table

What is it?

TRUNCATE removes all rows from a table without deleting the table structure.

Syntax:

sql

CopyEdit

TRUNCATE TABLE table_name;

 Faster than DELETE without a WHERE clause.

 Cannot be rolled back in most DBMS.

 Resets any auto-increment counters in some DBMS.

Example:

sql

CopyEdit

TRUNCATE TABLE Students;

⚠️ Summary Table of Commands

Operation Command Syntax Description

Create Table CREATE TABLE table_name (...); Defines a new table

Add Column
ALTER TABLE table_name ADD column

datatype; Adds new column

Drop Column
ALTER TABLE table_name DROP COLUMN

column; Deletes a column

Modify

Column

ALTER TABLE table_name MODIFY column

datatype; Changes column datatype

Rename

Column

ALTER TABLE table_name RENAME COLUMN

old TO new;
Renames a column (DBMS

specific)

Drop Table DROP TABLE table_name; Deletes entire table

Truncate

Table
TRUNCATE TABLE table_name;

Deletes all rows, keeps

structure

🧱 Key Points:

 Use CREATE TABLE to define structure before inserting data.

 Use ALTER TABLE carefully; some changes (like dropping columns) may cause data

loss.

 DROP TABLE permanently deletes table and data.

 TRUNCATE TABLE is fast but deletes all data without logging individual row deletes.

 Always back up important data before dropping or truncating.

1️⃣ Indexes in DBMS

🔷 What is an Index?

An Index is a database object that improves the speed of data retrieval operations on a table

at the cost of additional writes and storage space.

 Think of an index like a book's index — it helps you quickly locate information

without scanning the whole book.

 Without an index, searching for a record might require scanning every row (full table

scan).

 With an index, the DBMS can quickly find the row(s) matching the search criteria.

🔷 Purpose of Indexes

 Speed up SELECT queries by quickly locating data.

 Help enforce uniqueness with UNIQUE indexes.

 Improve performance for JOINs, WHERE, and ORDER BY clauses.

🔷 Types of Indexes

Type Description

Single-level Index Simple index on one or more columns

Unique Index Ensures indexed column(s) have unique values

Composite Index Index on multiple columns

Clustered Index Data stored physically in order of the index (only one per table)

Non-clustered Index Separate structure from data; table stored unordered

Bitmap Index Efficient for columns with low cardinality (few distinct values)

🔷 Creating an Index

sql

CopyEdit

CREATE INDEX index_name ON table_name(column_name);

🔷 Creating a Unique Index

sql

CopyEdit

CREATE UNIQUE INDEX unique_index_name ON table_name(column_name);

🔷 Examples

sql

CopyEdit

-- Create an index on the "Name" column of Students table

CREATE INDEX idx_name ON Students(Name);

-- Create a unique index on Email column

CREATE UNIQUE INDEX idx_email_unique ON Students(Email);

-- Composite index on (LastName, FirstName)

CREATE INDEX idx_name_composite ON Students(LastName, FirstName);

🔷 Dropping an Index

sql

CopyEdit

DROP INDEX index_name;

🔷 Important Notes:

 Indexes speed up read but slow down write operations (INSERT, UPDATE,

DELETE).

 Use indexes wisely; too many indexes can degrade performance.

 Clustered index determines the physical order of data.

2️⃣ Views in DBMS

🔷 What is a View?

A View is a virtual table based on the result-set of an SQL query.

 It looks and behaves like a table but does not store data physically.

 It is defined by a SELECT query.

 When you query a view, the DBMS runs the underlying query to produce the data.

🔷 Purpose of Views

 Simplify complex queries by encapsulating them.

 Enhance security by restricting access to certain columns or rows.

 Present a consistent, customized interface to the data.

 Can be used to aggregate or join data from multiple tables.

🔷 Creating a View

sql

CopyEdit

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

🔷 Examples

sql

CopyEdit

-- View to show only active students

CREATE VIEW ActiveStudents AS

SELECT StudentID, Name, Age

FROM Students

WHERE Status = 'Active';

-- View to show student names with their department names (joining two

tables)

CREATE VIEW StudentDept AS

SELECT s.StudentID, s.Name, d.DeptName

FROM Students s

JOIN Departments d ON s.DeptID = d.DeptID;

🔷 Querying a View

sql

CopyEdit

SELECT * FROM ActiveStudents;

🔷 Updating a View

 Views are usually read-only.

 Some DBMS allow updatable views if the view is simple (single table, no

aggregates).

 To update data through a view, it must map directly to the underlying table columns.

🔷 Dropping a View

sql

CopyEdit

DROP VIEW view_name;

⚠️ Summary Table

Feature Index View

Definition Data structure to speed up data retrieval Virtual table based on a query

Stores Data? Yes
No (virtual, stores query definition

only)

Purpose Improve query performance Simplify queries, enhance security

Can be

Updated?

No (except some advanced indexes like

bitmap)
Sometimes (if simple view)

Example Use
Index on columns used in WHERE or

JOIN

Provide limited data access or

abstraction

🧱 Key Points

 Use indexes to improve SELECT query performance but beware of overhead during

INSERT/UPDATE/DELETE.

 Use views to simplify complex SQL, enforce security, or present data in a user-

friendly manner.

 Views do not contain data; they run the underlying query every time you access them.

Nested Query

1️⃣ What is a Nested Query?

A Nested Query or Subquery is an SQL query embedded inside another query (called the

outer query).

 The subquery is executed first and its result is passed to the outer query.

 Used to perform complex operations by breaking them into simpler queries.

 Can be placed in SELECT, FROM, WHERE, or HAVING clauses.

2️⃣ Purpose of Nested Queries

 Filter data based on the results of another query.

 Retrieve data that depends on other data.

 Simplify complex SQL statements.

 Avoid multiple round-trips between application and database.

3️⃣ Types of Subqueries

Type Description Example Location

Single-row Returns a single row/value
Used with =, <, >, <= etc. in

WHERE

Multiple-row Returns multiple rows/values Used with IN, ANY, ALL

Multiple-

column
Returns multiple columns Used with tuple comparisons

Correlated
Subquery depends on outer query for

values
Re-executed for each outer row

Non-correlated Independent subquery Executed once

4️⃣ Syntax Examples

Basic Subquery in WHERE clause:

sql

CopyEdit

SELECT column1, column2

FROM table1

WHERE column1 = (SELECT column1 FROM table2 WHERE condition);

5️⃣ Detailed Examples

Example 1: Single-row Subquery

Find employees with salary equal to the highest salary.

sql

CopyEdit

SELECT EmpName, Salary

FROM Employees

WHERE Salary = (SELECT MAX(Salary) FROM Employees);

 The subquery (SELECT MAX(Salary) FROM Employees) returns the maximum

salary.

 The outer query fetches employee(s) with that salary.

Example 2: Multiple-row Subquery with IN

Find employees who work in departments located in 'New York'.

sql

CopyEdit

SELECT EmpName, DeptID

FROM Employees

WHERE DeptID IN (SELECT DeptID FROM Departments WHERE Location = 'New

York');

 Subquery returns all department IDs in New York.

 Outer query finds employees in those departments.

Example 3: Multiple-column Subquery

Find employees who have the same salary and department as employee 'John'.

sql

CopyEdit

SELECT EmpName

FROM Employees

WHERE (Salary, DeptID) = (SELECT Salary, DeptID FROM Employees WHERE

EmpName = 'John');

Example 4: Correlated Subquery

Find employees whose salary is greater than the average salary in their department.

sql

CopyEdit

SELECT EmpName, Salary, DeptID

FROM Employees e1

WHERE Salary > (

 SELECT AVG(Salary)

 FROM Employees e2

 WHERE e1.DeptID = e2.DeptID

);

 Subquery refers to e1.DeptID from the outer query.

 Executed for each employee.

Example 5: Subquery in FROM clause (Derived Table)

Find average salary per department and then select departments with average salary > 50000.

sql

CopyEdit

SELECT DeptID, AvgSalary

FROM (

 SELECT DeptID, AVG(Salary) AS AvgSalary

 FROM Employees

 GROUP BY DeptID

) AS DeptAvg

WHERE AvgSalary > 50000;

6️⃣ Key Points About Nested Queries

 Subqueries can be nested multiple levels deep.

 Subqueries can return:

o A single value (scalar)

o A row (tuple)

o A table (multiple rows and columns)

 Use EXISTS for checking existence of rows:

sql

CopyEdit

SELECT EmpName

FROM Employees e

WHERE EXISTS (

 SELECT 1 FROM Projects p WHERE p.EmpID = e.EmpID

);

 EXISTS returns TRUE if subquery returns at least one row.

7️⃣ Advantages of Nested Queries

 Improves query readability.

 Breaks complex logic into manageable parts.

 Allows writing powerful queries in a structured way.

8️⃣ Disadvantages

 Sometimes less efficient than joins.

 Correlated subqueries can be slow due to repeated execution.

 Not always intuitive for beginners.

Summary Table

Subquery Type Description Example Use Case

Single-row Returns single value Compare column with one value

Multiple-row Returns list of values Use IN to filter multiple matches

Multiple-column Returns multiple columns Compare tuples

Correlated Depends on outer query column Filter rows conditionally

Non-correlated Independent subquery Used for aggregation or filtering

Joins

1️⃣ What is a Join?

A Join is an SQL operation used to combine rows from two or more tables based on a

related column between them.

 Joins help retrieve related data stored across multiple tables in a relational database.

 The result of a join is a new table containing columns from the joined tables.

2️⃣ Why Use Joins?

 To query data distributed across multiple tables.

 To maintain normalization and avoid redundant data.

 To analyze relationships between entities (e.g., employees & departments).

3️⃣ Types of Joins

Join Type Description

INNER JOIN Returns rows with matching values in both tables

LEFT JOIN (LEFT OUTER

JOIN)

Returns all rows from left table + matching from right;

NULL if no match

RIGHT JOIN (RIGHT OUTER

JOIN)

Returns all rows from right table + matching from left;

NULL if no match

FULL JOIN (FULL OUTER

JOIN)

Returns all rows when there is a match in either left or

right table

CROSS JOIN Returns Cartesian product (all possible combinations)

SELF JOIN Joining a table with itself

NATURAL JOIN Join automatically on all columns with the same name

4️⃣ Join Syntax and Examples

4.1 INNER JOIN

Returns only the rows where there is a match in both tables.

sql

CopyEdit

SELECT e.EmpID, e.Name, d.DeptName

FROM Employees e

INNER JOIN Departments d ON e.DeptID = d.DeptID;

4.2 LEFT JOIN (LEFT OUTER JOIN)

Returns all rows from the left table, and matched rows from the right table. If no match,

NULL appears in right table columns.

sql

CopyEdit

SELECT e.EmpID, e.Name, d.DeptName

FROM Employees e

LEFT JOIN Departments d ON e.DeptID = d.DeptID;

4.3 RIGHT JOIN (RIGHT OUTER JOIN)

Returns all rows from the right table, and matched rows from the left table. NULL if no

match on left.

sql

CopyEdit

SELECT e.EmpID, e.Name, d.DeptName

FROM Employees e

RIGHT JOIN Departments d ON e.DeptID = d.DeptID;

4.4 FULL JOIN (FULL OUTER JOIN)

Returns all rows where there is a match in either left or right table. NULLs for missing

matches.

sql

CopyEdit

SELECT e.EmpID, e.Name, d.DeptName

FROM Employees e

FULL OUTER JOIN Departments d ON e.DeptID = d.DeptID;

Note: Some DBMS like MySQL don’t support FULL OUTER JOIN directly.

4.5 CROSS JOIN

Returns the Cartesian product of rows from tables (every row from left joined with every row

from right).

sql

CopyEdit

SELECT e.Name, d.DeptName

FROM Employees e

CROSS JOIN Departments d;

4.6 SELF JOIN

Join a table with itself, useful to find hierarchical data.

Example: Find employees and their managers.

sql

CopyEdit

SELECT e.EmpName AS Employee, m.EmpName AS Manager

FROM Employees e

LEFT JOIN Employees m ON e.ManagerID = m.EmpID;

4.7 NATURAL JOIN

Joins tables based on columns with the same name and compatible data types

automatically.

sql

CopyEdit

SELECT *

FROM Employees

NATURAL JOIN Departments;

Note: Use with caution because it depends on column names.

5️⃣ Visual Example of INNER JOIN

Employees Table Departments Table

EmpID Name

------- ------

1 John

2 Mary

3 Alex

INNER JOIN on DeptID returns:

EmpID Name DeptID DeptName

1 John 10 Sales

2 Mary 20 Marketing

3 Alex 30 IT

6️⃣ Important Notes

 Join condition is specified by ON clause: which columns relate tables.

 Without a join condition (in INNER JOIN), you get a Cartesian product.

 Outer joins (LEFT, RIGHT, FULL) include rows with no matching counterpart

with NULLs.

 Performance depends on indexes on join columns.

7️⃣ Summary Table of Joins

Join Type Returns Use Case

INNER JOIN Only matching rows Find matches between tables

LEFT OUTER

JOIN
All rows left + matched right

Show all from left, match if any on

right

Join Type Returns Use Case

RIGHT OUTER

JOIN
All rows right + matched left

Show all from right, match if any

on left

FULL OUTER

JOIN

All rows matched or unmatched

from both

Combine all data, keep unmatched

too

CROSS JOIN
Cartesian product (all

combinations)
Generate combinations or test

SELF JOIN Table joined to itself
Hierarchies, comparisons within

table

NATURAL JOIN
Automatically on common

columns

Simple join when columns are

named same

Aggregate functions

1️⃣ What are Aggregate Functions?

Aggregate Functions are built-in SQL functions that perform a calculation on a set of values

and return a single value.

 Used to summarize or analyze data.

 Operate on a group of rows rather than on individual rows.

 Commonly used with the GROUP BY clause but can also be used without it.

2️⃣ Common Aggregate Functions

Function Description

COUNT() Counts the number of rows or non-null values

SUM() Calculates the sum of numeric values

AVG() Calculates the average (mean) of numeric values

MIN() Finds the minimum value

MAX() Finds the maximum value

3️⃣ Syntax of Aggregate Functions

sql

CopyEdit

SELECT AGG_FUNC(column_name)

FROM table_name

WHERE condition;

Example:

sql

CopyEdit

SELECT COUNT(*) FROM Employees;

4️⃣ Examples of Aggregate Functions

Example 1: COUNT()

Count the total number of employees.

sql

CopyEdit

SELECT COUNT(*) AS TotalEmployees

FROM Employees;

Example 2: SUM()

Find the total salary paid to all employees.

sql

CopyEdit

SELECT SUM(Salary) AS TotalSalary

FROM Employees;

Example 3: AVG()

Find the average salary of employees.

sql

CopyEdit

SELECT AVG(Salary) AS AverageSalary

FROM Employees;

Example 4: MIN() and MAX()

Find the lowest and highest salary in the company.

sql

CopyEdit

SELECT MIN(Salary) AS MinSalary, MAX(Salary) AS MaxSalary

FROM Employees;

5️⃣ Using Aggregate Functions with GROUP BY

The GROUP BY clause groups rows that have the same values in specified columns into

summary rows.

Example: Total salary per department

sql

CopyEdit

SELECT DeptID, SUM(Salary) AS DeptSalaryTotal

FROM Employees

GROUP BY DeptID;

Example: Count employees per department

sql

CopyEdit

SELECT DeptID, COUNT(*) AS NumberOfEmployees

FROM Employees

GROUP BY DeptID;

6️⃣ Using Aggregate Functions with HAVING Clause

 HAVING is used to filter groups after aggregation (like WHERE but for groups).

Example: Departments with more than 5 employees

sql

CopyEdit

SELECT DeptID, COUNT(*) AS NumberOfEmployees

FROM Employees

GROUP BY DeptID

HAVING COUNT(*) > 5;

7️⃣ Important Notes

 Aggregate functions ignore NULL values except COUNT(*) which counts all rows.

 You cannot mix aggregated and non-aggregated columns in SELECT without GROUP

BY.

 Can be nested inside other queries or combined with joins.

8️⃣ Summary Table of Aggregate Functions

Function Purpose Example

COUNT Number of rows or non-null values SELECT COUNT(*) FROM Employees;

SUM Sum of numeric column SELECT SUM(Salary) FROM Employees;

Function Purpose Example

AVG Average of numeric column SELECT AVG(Salary) FROM Employees;

MIN Minimum value SELECT MIN(Salary) FROM Employees;

MAX Maximum value SELECT MAX(Salary) FROM Employees;

Grouping and Ordering

🔷 What is Grouping?

 Grouping is a way to arrange identical data into groups.

 The GROUP BY clause groups rows that have the same values in specified columns.

 Used primarily with aggregate functions (like SUM(), COUNT(), AVG()) to perform

calculations on each group.

🔷 Syntax of GROUP BY

sql

CopyEdit

SELECT column1, AGG_FUNC(column2)

FROM table_name

WHERE condition

GROUP BY column1;

🔷 How it works

 The table is split into groups based on unique values of the grouping column(s).

 Aggregate functions calculate summary statistics per group.

 You can group by one or multiple columns.

🔷 Example: Grouping by single column

Find total salary paid in each department.

sql

CopyEdit

SELECT DeptID, SUM(Salary) AS TotalSalary

FROM Employees

GROUP BY DeptID;

🔷 Example: Grouping by multiple columns

Count employees by department and job role.

sql

CopyEdit

SELECT DeptID, JobRole, COUNT(*) AS EmployeeCount

FROM Employees

GROUP BY DeptID, JobRole;

🔷 Important Points on Grouping

 Columns in SELECT that are not aggregated must be listed in GROUP BY.

 GROUP BY is applied after filtering rows with WHERE.

 To filter groups (not rows), use HAVING clause.

🔷 Filtering Groups: HAVING

Filter groups based on aggregate conditions.

Example: Departments with total salary > 100,000.

sql

CopyEdit

SELECT DeptID, SUM(Salary) AS TotalSalary

FROM Employees

GROUP BY DeptID

HAVING SUM(Salary) > 100000;

2️⃣ Ordering in DBMS (ORDER BY)

🔷 What is Ordering?

 Ordering sorts the result rows of a query by one or more columns.

 The ORDER BY clause controls the output sequence.

🔷 Syntax of ORDER BY

sql

CopyEdit

SELECT column1, column2

FROM table_name

WHERE condition

ORDER BY column1 [ASC|DESC], column2 [ASC|DESC];

 ASC = ascending order (default).

 DESC = descending order.

🔷 Examples of Ordering

Example 1: Order employees by salary (ascending)
sql

CopyEdit

SELECT EmpName, Salary

FROM Employees

ORDER BY Salary ASC;

Example 2: Order employees by department descending and salary ascending
sql

CopyEdit

SELECT EmpName, DeptID, Salary

FROM Employees

ORDER BY DeptID DESC, Salary ASC;

3️⃣ Combining Grouping and Ordering

You can group data and then order the groups based on aggregate values.

Example: List departments by total salary paid, highest first.

sql

CopyEdit

SELECT DeptID, SUM(Salary) AS TotalSalary

FROM Employees

GROUP BY DeptID

ORDER BY TotalSalary DESC;

4️⃣ Summary Table

Clause Purpose Example

GROUP BY Group rows for aggregate calculation GROUP BY DeptID

HAVING Filter groups based on aggregate condition HAVING COUNT(*) > 5

ORDER BY Sort rows in ascending or descending order ORDER BY Salary DESC

5️⃣ Important Notes

 WHERE filters rows before grouping.

 HAVING filters groups after grouping.

 ORDER BY sorts the final result set.

 Can use column names or column positions in ORDER BY.

PL/SQL: Procedures,

📌 What is a PL/SQL Procedure?

A Procedure in PL/SQL is a named block of code that performs a specific task. It can

accept input parameters, process them, and optionally return results via OUT parameters.

Procedures are stored in the database and can be executed as needed.

🔧 Syntax of a PL/SQL Procedure

sql

CopyEdit

CREATE [OR REPLACE] PROCEDURE procedure_name

 (parameter1 [mode] datatype, parameter2 [mode] datatype, ...)

IS

 -- Declarations

BEGIN

 -- Executable statements

EXCEPTION

 -- Exception handling

END procedure_name;

/

Parameter Modes:

 IN – (Default) Used to pass a value into the procedure.

 OUT – Used to return a value to the caller.

 IN OUT – Used to pass an initial value and return an updated value.

✅ Example 1: Simple Procedure (No Parameters)

This procedure displays a message.

sql

CopyEdit

CREATE OR REPLACE PROCEDURE say_hello IS

BEGIN

 DBMS_OUTPUT.PUT_LINE('Hello, PL/SQL!');

END say_hello;

/

-- Execute it:

BEGIN

 say_hello;

END;

/

✅ Example 2: Procedure with IN Parameter

sql

CopyEdit

CREATE OR REPLACE PROCEDURE greet_user(p_name IN VARCHAR2) IS

BEGIN

 DBMS_OUTPUT.PUT_LINE('Hello, ' || p_name || '!');

END greet_user;

/

-- Call the procedure:

BEGIN

 greet_user('Alice');

END;

/

✅ Example 3: Procedure with OUT Parameter

sql

CopyEdit

CREATE OR REPLACE PROCEDURE get_square(

 p_number IN NUMBER,

 p_result OUT NUMBER

) IS

BEGIN

 p_result := p_number * p_number;

END get_square;

/

-- Call the procedure:

DECLARE

 result NUMBER;

BEGIN

 get_square(5, result);

 DBMS_OUTPUT.PUT_LINE('Square: ' || result);

END;

/

✅ Example 4: Procedure to Insert into Table

Assume a table students(name VARCHAR2(50), marks NUMBER).

sql

CopyEdit

CREATE OR REPLACE PROCEDURE add_student(

 p_name IN VARCHAR2,

 p_marks IN NUMBER

) IS

BEGIN

 INSERT INTO students(name, marks)

 VALUES(p_name, p_marks);

 DBMS_OUTPUT.PUT_LINE('Student added successfully.');

END add_student;

/

-- Call:

BEGIN

 add_student('John', 85);

END;

/

🔄 Modifying a Procedure

To modify a procedure, use CREATE OR REPLACE so you don’t need to drop it first.

❗ Dropping a Procedure

sql

CopyEdit

DROP PROCEDURE procedure_name;

🔍 Viewing Procedures in the Database

To list procedures:

sql

CopyEdit

SELECT object_name

FROM user_objects

WHERE object_type = 'PROCEDURE';

📌 Advantages of Using Procedures

1. Modularization: Code can be reused easily.

2. Maintainability: Easier to manage logic.

3. Performance: Stored procedures run on the server side, reducing network traffic.

4. Security: Permissions can be granted to procedures without exposing underlying

tables.

Functions

📌 What is a PL/SQL Function?

A function in PL/SQL is a named subprogram that performs a computation and returns

a single value. Like procedures, functions can accept parameters but must return a value

using the RETURN clause.

🔧 Syntax of a PL/SQL Function

sql

CopyEdit

CREATE [OR REPLACE] FUNCTION function_name

 (parameter1 [mode] datatype, ...)

RETURN return_datatype

IS

 -- Variable declarations

BEGIN

 -- Function logic

 RETURN value;

EXCEPTION

 -- Exception handling

END function_name;

/

Note:

 Functions must return a single value.

 The parameter mode in functions can be IN only (no OUT or IN OUT allowed directly).

✅ Example 1: Simple Function (Returns Square of a

Number)

sql

CopyEdit

CREATE OR REPLACE FUNCTION get_square(p_number IN NUMBER)

RETURN NUMBER

IS

 v_result NUMBER;

BEGIN

 v_result := p_number * p_number;

 RETURN v_result;

END;

/

-- Call the function in an anonymous block:

DECLARE

 res NUMBER;

BEGIN

 res := get_square(6);

 DBMS_OUTPUT.PUT_LINE('Square is: ' || res);

END;

/

✅ Example 2: Function to Calculate Factorial

sql

CopyEdit

CREATE OR REPLACE FUNCTION factorial(n IN NUMBER)

RETURN NUMBER

IS

 result NUMBER := 1;

BEGIN

 FOR i IN 1..n LOOP

 result := result * i;

 END LOOP;

 RETURN result;

END;

/

-- Call:

DECLARE

 res NUMBER;

BEGIN

 res := factorial(5);

 DBMS_OUTPUT.PUT_LINE('Factorial: ' || res);

END;

/

✅ Example 3: Function in SQL Statement

Assume a table students(name VARCHAR2(50), marks NUMBER).

Create a function that gives grade based on marks:

sql

CopyEdit

CREATE OR REPLACE FUNCTION get_grade(m NUMBER)

RETURN VARCHAR2

IS

BEGIN

 IF m >= 90 THEN

 RETURN 'A';

 ELSIF m >= 75 THEN

 RETURN 'B';

 ELSIF m >= 60 THEN

 RETURN 'C';

 ELSE

 RETURN 'F';

 END IF;

END;

/

-- Use the function in a SELECT query:

SELECT name, marks, get_grade(marks) AS grade

FROM students;

🧱 Differences Between Function and Procedure

Feature Function Procedure

Returns value Must return a value Does not need to return a value

Call in SQL Can be called from SQL queries Cannot be called from SQL directly

Use Computation, returning results Performing actions, like DML

Parameters Only IN parameters IN, OUT, and IN OUT supported

🧱 Benefits of Functions in DBMS

1. Encapsulation: Logic in one place.

2. Reusability: Use the same logic in multiple queries.

3. Modularity: Easier to read and maintain code.

4. Performance: Reduces query complexity when reused.

❗ Dropping a Function

sql

CopyEdit

DROP FUNCTION function_name;

📍 Viewing All Functions

sql

CopyEdit

SELECT object_name

FROM user_objects

WHERE object_type = 'FUNCTION';

Triggers,

📌 What is a Trigger in DBMS?

A trigger is a stored PL/SQL block that automatically executes (fires) in response to

specific events on a table or view.

🔄 Common Triggering Events:

 INSERT
 UPDATE
 DELETE

🧱 Use Case:

Triggers are useful for:

 Auditing (logging changes),

 Enforcing business rules,

 Preventing invalid transactions,

 Automatically updating related tables.

🔧 Syntax of a Trigger

sql

CopyEdit

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF}

{INSERT | UPDATE | DELETE} ON table_name

[FOR EACH ROW]

[WHEN (condition)]

BEGIN

 -- Trigger logic

END;

/

Key Clauses:

 BEFORE: Trigger fires before the event.

 AFTER: Trigger fires after the event.

 FOR EACH ROW: Trigger fires once per affected row.

 WHEN: Optional condition.

✅ Example 1: BEFORE INSERT Trigger (Audit

Logging)

Assume you have a table for user activity logs:

sql

CopyEdit

CREATE TABLE audit_log (

 username VARCHAR2(50),

 action_time DATE,

 action VARCHAR2(100)

);

Create a trigger to log inserts on a users table:

sql

CopyEdit

CREATE OR REPLACE TRIGGER trg_user_insert

BEFORE INSERT ON users

FOR EACH ROW

BEGIN

 INSERT INTO audit_log (username, action_time, action)

 VALUES (:NEW.username, SYSDATE, 'New user inserted');

END;

/

Explanation:

 :NEW.username accesses the new row being inserted.

 This will log each insert into audit_log.

✅ Example 2: AFTER DELETE Trigger

Log deletion of records:

sql

CopyEdit

CREATE OR REPLACE TRIGGER trg_user_delete

AFTER DELETE ON users

FOR EACH ROW

BEGIN

 INSERT INTO audit_log (username, action_time, action)

 VALUES (:OLD.username, SYSDATE, 'User deleted');

END;

/

✅ Example 3: BEFORE UPDATE Trigger (Enforce

Business Rule)

Prevent salary from being reduced:

sql

CopyEdit

CREATE OR REPLACE TRIGGER trg_prevent_salary_cut

BEFORE UPDATE OF salary ON employees

FOR EACH ROW

BEGIN

 IF :NEW.salary < :OLD.salary THEN

 RAISE_APPLICATION_ERROR(-20001, 'Salary reduction not allowed');

 END IF;

END;

/

✅ Example 4: Trigger on Multiple Events

sql

CopyEdit

CREATE OR REPLACE TRIGGER trg_multi_event

AFTER INSERT OR DELETE OR UPDATE ON students

FOR EACH ROW

BEGIN

 DBMS_OUTPUT.PUT_LINE('Students table was modified');

END;

/

📜 OLD and NEW Pseudorecords

 :OLD.column_name – Value before the change (used in DELETE and UPDATE).

 :NEW.column_name – Value after the change (used in INSERT and UPDATE).

🧱 Types of Triggers

Type Description

BEFORE Trigger Executes before the triggering event

AFTER Trigger Executes after the triggering event

INSTEAD OF Trigger Used on views to simulate changes

Row-Level Trigger Executes for each affected row

Statement-Level Trigger Executes once per triggering statement

❗ Dropping a Trigger

sql

CopyEdit

DROP TRIGGER trigger_name;

🔍 Viewing Existing Triggers

sql

CopyEdit

SELECT trigger_name, table_name, triggering_event

FROM user_triggers;

⚠️ Notes on Triggers

 Triggers should not perform complex logic or DML operations that affect the same

table (can lead to mutating table errors).

 Avoid overuse — triggers can make debugging and maintenance harder.

Cursor

📌 What is a Cursor in DBMS?

A cursor is a pointer to a context area in memory where SQL statements are processed. It

allows row-by-row processing of the result set returned by a SQL query.

🔄 Types of Cursors in PL/SQL

Type Description

Implicit Cursor
Automatically created by Oracle for single SQL statements like

INSERT, UPDATE, DELETE, SELECT INTO.

Explicit Cursor
Manually declared and controlled by the programmer for queries that

return more than one row.

Cursor FOR Loop Simplifies looping through explicit cursors.

Parameterized

Cursor
Accepts parameters to filter rows dynamically.

✅ Implicit Cursor Example

sql

CopyEdit

BEGIN

 UPDATE employees SET salary = salary + 500 WHERE department_id = 10;

 DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT || ' rows updated.');

END;

/

 SQL%ROWCOUNT returns the number of affected rows.

 Other attributes:

o SQL%FOUND, SQL%NOTFOUND, SQL%ISOPEN

✅ Explicit Cursor – Syntax

sql

CopyEdit

DECLARE

 CURSOR cursor_name IS

 SELECT_statement;

 variable1 table.column%TYPE;

 ...

BEGIN

 OPEN cursor_name;

 LOOP

 FETCH cursor_name INTO variable1, variable2, ...;

 EXIT WHEN cursor_name%NOTFOUND;

 -- Process data

 END LOOP;

 CLOSE cursor_name;

END;

/

✅ Example: Explicit Cursor

Print names and salaries of employees:

sql

CopyEdit

DECLARE

 CURSOR emp_cursor IS

 SELECT first_name, salary FROM employees;

 v_name employees.first_name%TYPE;

 v_salary employees.salary%TYPE;

BEGIN

 OPEN emp_cursor;

 LOOP

 FETCH emp_cursor INTO v_name, v_salary;

 EXIT WHEN emp_cursor%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE('Name: ' || v_name || ', Salary: ' || v_salary);

 END LOOP;

 CLOSE emp_cursor;

END;

/

✅ Cursor FOR Loop – Simplified Syntax

sql

CopyEdit

BEGIN

 FOR emp_rec IN (SELECT first_name, salary FROM employees) LOOP

 DBMS_OUTPUT.PUT_LINE('Name: ' || emp_rec.first_name || ', Salary: '

|| emp_rec.salary);

 END LOOP;

END;

/

 Automatically opens, fetches, and closes the cursor.

✅ Parameterized Cursor Example

sql

CopyEdit

DECLARE

 CURSOR emp_cursor(dept_id NUMBER) IS

 SELECT first_name, salary FROM employees WHERE department_id =

dept_id;

 v_name employees.first_name%TYPE;

 v_salary employees.salary%TYPE;

BEGIN

 OPEN emp_cursor(10);

 LOOP

 FETCH emp_cursor INTO v_name, v_salary;

 EXIT WHEN emp_cursor%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE('Name: ' || v_name || ', Salary: ' || v_salary);

 END LOOP;

 CLOSE emp_cursor;

END;

/

🔍 Cursor Attributes

Attribute Description

%FOUND TRUE if fetch returns a row

%NOTFOUND TRUE if fetch does not return a row

%ISOPEN TRUE if cursor is open

%ROWCOUNT Number of rows fetched so far

🧱 Why Use Cursors?

 When processing each row individually is necessary.

 To perform row-level operations (e.g., logging, transformation).

 When a SQL query returns multiple rows and you want to iterate over them.

⚠️ Cursor Performance Tips

 Use bulk collect for better performance when processing large datasets.

 Avoid unnecessary cursor usage; use set-based operations where possible.

🗑️ Closing a Cursor

Always CLOSE an explicit cursor when done to free up memory:

sql

CopyEdit

CLOSE cursor_name;

Transactions: ACID properties

📌 What is a Transaction in DBMS?

A transaction is a sequence of one or more SQL operations (such as INSERT, UPDATE,

DELETE) treated as a single unit of work.

 A transaction must be either fully completed or fully failed (rolled back).

 Common SQL transaction control statements:

o COMMIT – Saves the changes.

o ROLLBACK – Undoes changes.

o SAVEPOINT – Sets a point to roll back to.

o SET TRANSACTION – Specifies characteristics of a transaction.

🔄 ACID Properties of Transactions

ACID is an acronym for the four key properties that ensure reliable processing of database

transactions.

1. ✅ Atomicity (All or Nothing)

Ensures that all operations in a transaction either complete successfully or fail as a whole.

If any part fails, the whole transaction is rolled back.

🧠 Think of it like a light switch: it’s either fully ON or fully OFF—never halfway.

Example:

sql

CopyEdit

BEGIN

 UPDATE accounts SET balance = balance - 100 WHERE account_id = 1;

 UPDATE accounts SET balance = balance + 100 WHERE account_id = 2;

 COMMIT; -- Both operations succeed

EXCEPTION

 WHEN OTHERS THEN

 ROLLBACK; -- If one fails, none take effect

END;

/

2. ✅ Consistency (Preserve Database Rules)

Ensures that a transaction brings the database from one valid state to another, maintaining

all data integrity constraints.

 Constraints like primary key, foreign key, NOT NULL, etc., must remain valid.

Example:

sql

CopyEdit

-- Suppose the constraint is balance >= 0

BEGIN

 UPDATE accounts SET balance = balance - 500 WHERE account_id = 1; --

balance was 400

 COMMIT; -- This violates the constraint → Transaction fails

EXCEPTION

 WHEN OTHERS THEN

 ROLLBACK; -- Keeps the database in a consistent state

END;

/

3. ✅ Isolation (No Interference)

Ensures that concurrent transactions do not affect each other’s execution. Intermediate

states of a transaction are invisible to others.

 Maintains data accuracy in concurrent environments.

 Isolation levels: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ,
SERIALIZABLE

Example:

Two users transferring money at the same time:

 Without isolation: they could both read the same balance before the other's update.

 With isolation: one waits for the other to finish, preventing dirty reads.

4. ✅ Durability (Permanent Changes)

Once a transaction is committed, its changes are permanent, even in case of system failure.

 Committed data is written to non-volatile storage.

 Ensures data survivability after crashes or shutdowns.

Example:

sql

CopyEdit

UPDATE products SET quantity = quantity - 1 WHERE product_id = 10;

COMMIT;

-- Even if system crashes now, quantity change persists

✅ Example of Complete Transaction

sql

CopyEdit

BEGIN

 -- Step 1: Withdraw from Account A

 UPDATE accounts SET balance = balance - 100 WHERE account_id = 1;

 -- Step 2: Deposit into Account B

 UPDATE accounts SET balance = balance + 100 WHERE account_id = 2;

 -- If both succeed

 COMMIT;

EXCEPTION

 WHEN OTHERS THEN

 -- Rollback on any failure

 ROLLBACK;

END;

/

💡 Summary Table

Property Description Ensures

Atomicity All operations succeed or none at all No partial updates

Consistency Data remains valid according to constraints Integrity of data

Isolation Transactions don’t interfere with each other Correctness in concurrency

Durability Committed changes are permanent Survive crashes and failures

 Concurrency control

📌 What is Concurrency Control in DBMS?

Concurrency control in DBMS refers to the management of simultaneous operations

(transactions) without conflicting with each other, ensuring data integrity and consistency

in a multi-user environment.

🧱 Why is it needed?

 Multiple users may read/write the same data at the same time.

 To avoid conflicts, data loss, and inconsistency.

 To ensure ACID properties (especially Isolation and Consistency).

🔄 Problems in Concurrency (Anomalies)

1. 🧱 Lost Update Problem

Two transactions read the same data and update it, but one update is overwritten by the

other.

Example:

text

CopyEdit

T1: Read salary = 5000

T2: Read salary = 5000

T1: Update salary = 5000 + 500 → 5500

T2: Update salary = 5000 + 1000 → 6000 (overwrites T1)

2. 🧱 Dirty Read (Uncommitted Dependency)

One transaction reads data modified by another transaction that is not yet committed.

Example:

text

CopyEdit

T1: Update salary = 6000

T2: Read salary = 6000

T1: Rollback (salary back to 5000)

T2: Used a value that never existed

3. 🧱 Non-repeatable Read

A transaction reads the same data twice, and gets different values because another

transaction modified it between reads.

4. 🧱 Phantom Read

A transaction reads a set of rows, and on re-execution sees new rows inserted by another

transaction.

✅ Concurrency Control Techniques

1. 🔐 Lock-Based Protocols

Locks restrict access to data to ensure consistency.

 Shared Lock (S): For reading.

 Exclusive Lock (X): For writing.

🔄 Two-Phase Locking (2PL)

Two phases:

1. Growing phase: Transaction acquires all required locks.

2. Shrinking phase: Releases locks and cannot acquire new ones.

✅ Ensures serializability but may cause deadlocks.

2. 🧱 Timestamp Ordering Protocol

Each transaction gets a unique timestamp. The DBMS uses these timestamps to order the

execution of operations to avoid conflicts.

 Older transactions get priority.

 Avoids deadlocks.

 May lead to starvation of newer transactions.

3. 🔃 Optimistic Concurrency Control

Assumes conflict is rare:

 Transactions execute without locks.

 Validation is done before commit to ensure no conflict occurred.

 Best for read-heavy systems with low contention.

4. 🧱 Multiversion Concurrency Control (MVCC)

Maintains multiple versions of data to allow concurrent reads and writes.

 Readers don’t block writers and vice versa.

 Used in PostgreSQL, Oracle, and MySQL (InnoDB).

5. 🧱 Serialization Graph Checking

Constructs a graph of transactions and their dependencies.

 If the graph has no cycles, the schedule is serializable.

 Complex to implement.

🧱 Example: Lock-Based Concurrency Control

sql

CopyEdit

-- Transaction T1

BEGIN;

SELECT balance FROM accounts WHERE id = 101 FOR UPDATE;

UPDATE accounts SET balance = balance - 100 WHERE id = 101;

COMMIT;

-- Transaction T2 (waits if T1 holds lock)

BEGIN;

SELECT balance FROM accounts WHERE id = 101 FOR UPDATE;

UPDATE accounts SET balance = balance + 100 WHERE id = 101;

COMMIT;

 FOR UPDATE locks the row.

 T2 will wait until T1 completes.

🛡️ Isolation Levels (SQL Standard)

Isolation Level Description Problems Prevented

READ UNCOMMITTED Lowest, allows dirty reads None

READ COMMITTED No dirty reads ✅ Dirty read

REPEATABLE READ No dirty or non-repeatable reads ✅ Dirty + ✅ Non-repeatable read

SERIALIZABLE Highest, no anomalies ✅ All anomalies

⚠️ Deadlocks in Concurrency

A deadlock occurs when two or more transactions are waiting on each other’s resources

indefinitely.

Example:

text

CopyEdit

T1 locks A → waits for B

T2 locks B → waits for A

🛠️ DBMS uses deadlock detection and timeout mechanisms to resolve.

✅ Best Practices

 Use proper isolation levels based on the use case.

 Use locks wisely (too many = low performance, too few = risk of conflicts).

 For large-scale applications, MVCC is a good choice.

 Handle exceptions and rollbacks properly.

🧱 Summary

Problem Technique/Tool

Lost Update Locking, MVCC

Dirty Read READ COMMITTED or higher isolation

Non-repeatable Read REPEATABLE READ or SERIALIZABLE

Phantom Read SERIALIZABLE, predicate locking

Deadlock Timeout, wait-die/wound-wait strategies

Locking techniques

📌 What is Locking in DBMS?

Locking is a concurrency control mechanism used in databases to restrict access to data

items when multiple transactions are executing simultaneously. The goal is to prevent data

anomalies (like dirty reads, lost updates) and ensure data consistency.

🔐 Why Use Locks?

To control problems caused by concurrent access such as:

 Lost updates

 Dirty reads

 Non-repeatable reads

 Phantom reads

🔑 Types of Locks in DBMS

Lock Type Description

Binary Lock Each data item has two states: locked or unlocked.

Shared Lock (S) Allows multiple transactions to read a data item, but not write to it.

Exclusive Lock (X) Allows a transaction to read and write a data item exclusively.

Read Lock Similar to shared lock — allows only reading.

Write Lock Similar to exclusive lock — allows reading and writing.

Intention Locks Used in hierarchical locking, such as table + row level locking.

🔁 Lock Granularity

 Fine-grained locks: row-level locking (more concurrency, more overhead).

 Coarse-grained locks: table-level locking (less concurrency, less overhead).

✅ Example 1: Shared vs Exclusive Lock

Let’s say we have a table accounts with a row:

account_id balance

101 5000

Shared Lock

Multiple transactions can read it:

sql

CopyEdit

-- T1:

SELECT balance FROM accounts WHERE account_id = 101; -- Shared lock

-- T2:

SELECT balance FROM accounts WHERE account_id = 101; -- Shared lock allowed

Exclusive Lock

Only one transaction can write:

sql

CopyEdit

-- T1:

UPDATE accounts SET balance = balance + 100 WHERE account_id = 101; --

Exclusive lock

-- T2:

UPDATE accounts SET balance = balance - 50 WHERE account_id = 101; -- Must

wait until T1 finishes

🔄 Lock-Based Protocols

1. Two-Phase Locking (2PL)

Ensures serializability by dividing the execution of a transaction into two phases:

 Growing Phase: A transaction may acquire locks but cannot release any.

 Shrinking Phase: A transaction may release locks but cannot acquire any.

🔒 Strict 2PL

 All exclusive (write) locks are held until commit/rollback.

 Prevents cascading rollbacks.

🔃 Example: Two Transactions

sql

CopyEdit

-- Transaction T1

BEGIN;

SELECT balance FROM accounts WHERE account_id = 101 FOR UPDATE;

UPDATE accounts SET balance = balance - 100 WHERE account_id = 101;

COMMIT;

-- Transaction T2

BEGIN;

SELECT balance FROM accounts WHERE account_id = 101 FOR UPDATE; -- Waits

for T1 to finish

UPDATE accounts SET balance = balance + 100 WHERE account_id = 101;

COMMIT;

Here, FOR UPDATE acquires a write/exclusive lock.

🧱 Lock Compatibility Matrix

 Shared (S) Exclusive (X)

Shared ✅ Yes ❌ No

Exclusive ❌ No ❌ No

🔃 Intention Locking (Advanced)

Used in multi-level locking (e.g., table and rows) to avoid conflicts between row-level and

table-level locks.

Types:

 IS (Intention Shared)

 IX (Intention Exclusive)

 SIX (Shared and Intention Exclusive)

🛠️ Deadlocks and Locks

When two or more transactions wait for each other to release locks, causing a cycle of

waiting:

Example:

text

CopyEdit

T1: Locks A → waits for B

T2: Locks B → waits for A

Deadlock Resolution:

 Timeouts (abort transaction after waiting too long)

 Deadlock detection algorithms (wait-for graph)

✅ Locking in SQL (Example – Oracle or MySQL)

sql

CopyEdit

-- Lock a row for update

SELECT * FROM employees WHERE emp_id = 100 FOR UPDATE;

-- Lock a table

LOCK TABLE employees IN EXCLUSIVE MODE;

💡 Best Practices for Locking

 Keep transactions short and fast to reduce lock time.

 Use row-level locking for high concurrency needs.

 Avoid manual locking unless necessary.

 Choose the appropriate isolation level.

🧱 Summary Table

Concept Description

Shared Lock (S) Multiple transactions can read

Exclusive Lock (X) Only one transaction can write

Two-Phase Locking Ensures serializability via locking phases

Strict 2PL Prevents cascading rollbacks

Intention Locks Used in multi-level locking scenarios

Lock Granularity Row-level vs Table-level

Deadlock Cycle of waiting — resolved by detection or timeout

Deadlock handling

🔁 What is a Deadlock in DBMS?

A deadlock is a situation in which two or more transactions are waiting indefinitely for

resources (like locks) that are held by each other.

🧱 Real-world analogy:

Two people holding a key the other needs, refusing to give it up — both are stuck!

⚠️ Deadlock Condition (Coffman’s Conditions)

A deadlock occurs when all the following four conditions hold simultaneously:

1. Mutual Exclusion: At least one resource is held in a non-shareable mode.

2. Hold and Wait: A transaction holds one resource and waits for another.

3. No Preemption: Resources cannot be forcibly taken away.

4. Circular Wait: A circular chain of transactions exists, where each waits for a

resource held by the next.

🧱 Example of a Deadlock

Consider two transactions:

text

CopyEdit

T1: Locks Resource A → then waits for B

T2: Locks Resource B → then waits for A

They wait on each other forever — this is a deadlock.

SQL Example:

sql

CopyEdit

-- T1

BEGIN;

UPDATE accounts SET balance = balance - 100 WHERE id = 1; -- Locks row 1

-- waits for T2's lock on row 2

-- T2

BEGIN;

UPDATE accounts SET balance = balance + 100 WHERE id = 2; -- Locks row 2

-- waits for T1's lock on row 1

🛡️ Deadlock Handling Techniques

1. ✅ Deadlock Prevention

Prevent at least one Coffman condition to ensure deadlock cannot occur.

Techniques:

 Resource ordering: Assign a fixed order and always acquire in that order.

 Preemptive locking: Force a transaction to release its locks.

 Wait-die and wound-wait protocols:

o Wait-Die: Older transaction waits, younger one is aborted.

o Wound-Wait: Older transaction forces younger to release resource.

2. 🔄 Deadlock Avoidance

Check for potential deadlocks before allowing a transaction to proceed.

Algorithm: Wait-For Graph

 Represent transactions and dependencies as a graph.

 If adding an edge creates a cycle, do not grant the lock.

Example:

 If T1 → T2 and T2 → T3 and T3 → T1 → cycle → deadlock

3. 🕵️♂️ Deadlock Detection and Recovery

Let deadlocks occur, but detect and resolve them.

Detection:

 Construct a Wait-For Graph (WFG).

 Check for cycles periodically.

Recovery:

 Abort one or more transactions to break the cycle.

 Prefer to abort the youngest, least resource-consuming, or non-critical transaction.

🔃 Example of Wait-For Graph

text

CopyEdit

T1 waiting for T2 → edge T1 → T2

T2 waiting for T3 → edge T2 → T3

T3 waiting for T1 → edge T3 → T1 → Cycle → Deadlock

🧱 Deadlock Detection in SQL (MySQL Example)

In MySQL InnoDB engine:

sql

CopyEdit

SHOW ENGINE INNODB STATUS;

Output shows information about the most recent deadlock and the transaction that was rolled

back.

⚙️ Deadlock Resolution Strategy (DBMS Behavior)

DBMS Behavior

Oracle Automatically detects and kills one transaction

MySQL InnoDB detects and rolls back

SQL Server Detects and chooses a victim

📋 Summary Table

Technique Description Example Tool/Method

Prevention Disallow some conditions Wait-die / Wound-wait

Avoidance Predict deadlock using resource allocation info Wait-for graph, ordering

Detection Allow, then detect via cycle detection Wait-for graph + rollback

Recovery Abort transactions involved in a deadlock Youngest transaction aborted

✅ Best Practices to Minimize Deadlocks

 Access tables and rows in the same order in all transactions.

 Keep transactions short and fast.

 Avoid user interaction within a transaction.

 Use row-level locking instead of table-level when possible.

 Set proper isolation levels.

Unit-IV

File Organization

📂 What is File Organization in DBMS?

File Organization refers to the way data is stored in files on disk. It defines the method of

arranging records within a file to enable efficient access, update, and retrieval operations.

🧱 Why File Organization is Important?

 Determines speed of access to records.

 Affects the efficiency of storage and query performance.

 Influences insertion, deletion, and updating speed.

📋 Types of File Organization

Type Description Use Case

1. Heap (Unordered) Records stored in the order they arrive Simple inserts

Type Description Use Case

2. Sequential Records stored sorted by a key field Batch processing, reports

3. Hashed Uses a hash function to map key to location Fast direct access

4. Clustered
Records of related tables stored together

physically
Optimized for joins

5. Indexed

Sequential
Combines sequential storage with indexing

Fast lookup + range

access

1️⃣ Heap File Organization (Unordered)

 Records are inserted at the end of the file.

 No specific order.

 Searching requires scanning the whole file (linear search).

✅ Advantages:

 Fast for inserts.

 Easy to maintain.

❌ Disadvantages:

 Slow for search/update/delete.

📌 Example:
Insert Records:

→ R1 → R2 → R3 → R4

Stored as:

[R1][R2][R3][R4]

2️⃣ Sequential File Organization

 Records stored in sorted order of a key (e.g., Employee ID).

 Binary search can be used.

 Efficient for range queries and batch updates.

✅ Advantages:

 Fast for reading sorted data.

 Efficient range-based searches.

❌ Disadvantages:

 Inserting a new record requires shifting.

 Costly updates and deletions.

📌 Example:
Sorted by ID:

[101][104][106][110]

3️⃣ Hash File Organization

 Uses a hash function on key field to determine the record's address.

 Provides direct access.

✅ Advantages:

 Very fast for exact match lookups.

 Best for equality searches.

❌ Disadvantages:

 Doesn’t support range queries well.

 May have collisions → handled by chaining or open addressing.

📌 Example:
Hash function: key % 10

Keys: 23, 34, 12 → stored at 3, 4, 2

4️⃣ Clustered File Organization

 Records from multiple related tables stored physically close together.

 Enhances performance of frequent joins.

✅ Advantages:

 Optimized for complex queries and joins.

❌ Disadvantages:

 Complicated to maintain.

 Slower insert/update/delete if clustering key changes.

📌 Example:

Orders and Customers frequently joined on Customer_ID → stored together on disk.

5️⃣ Indexed Sequential File Organization

 Combines sequential storage with an index for fast access.

 Index stores pointers to records.

✅ Advantages:

 Efficient for both direct and range access.

 Faster than pure sequential files.

❌ Disadvantages:

 Requires extra space for the index.

 Index needs to be maintained.

📌 Example:
Index:

[101] → Block 1

[106] → Block 2

Data:

Block 1: [101, 102, 103]

Block 2: [106, 107, 109]

🧱 Comparison Table

File Type Search Time Insert Time Best For

Heap O(n) O(1) Simple inserts

Sequential O(log n) O(n) Range queries, sorted access

Hash O(1) O(1) Direct access

Clustered O(log n) O(log n) Joins, grouped data

Indexed Seq. O(log n) O(n) Mixed search and batch work

✅ Best File Type Per Use Case

Use Case File Organization

Equality search (e.g., by ID) Hashed

Use Case File Organization

Sorted reports or range query Sequential or Indexed

High insert frequency Heap

Frequent joins (multi-table) Clustered

Mixed queries (fast access + sort) Indexed Sequential

🔚 Conclusion

File organization is crucial for:

 Database performance

 Efficient storage management

 Optimized query processing

Indexing

📚 What is Indexing in DBMS?

Indexing is a data structure technique used to quickly retrieve records from a database file.

Just like an index in a book helps you find a topic quickly, a database index allows the

DBMS to find rows without scanning the entire table.

🧱 Why Indexing?

Without an index, a DBMS would need to scan every row in a table to find matching records

(called full table scan), which is inefficient for large tables.

Indexing improves:

 Search performance

 Sorting

 Join performance

🔑 How Indexing Works

An index creates a mapping between a key column and its data row location. When a

query involves that column, the DBMS uses the index to jump directly to the data.

Analogy:

Like using an index in a textbook:

Topic → Page Number

In DBMS:

Column value → Row address (pointer)

🧱 Types of Indexing

Type Description

1. Primary Index Created automatically on primary key

2. Secondary Index Created on non-primary columns (for search optimization)

3. Clustered Index Sorts the actual table data based on key

4. Non-Clustered Index and data stored separately

5. Unique Index Ensures uniqueness of values in a column

6. Composite Index Created on multiple columns

7. B-Tree Index Balanced tree structure (common default)

8. Bitmap Index Uses bitmap arrays, suitable for low-cardinality columns

1️⃣ Primary Index

 Automatically created on primary key.

 Records are physically ordered based on this index.

 Only one primary index per table.

📌 Example:
sql

CopyEdit

CREATE TABLE employees (

 emp_id INT PRIMARY KEY,

 name VARCHAR(50)

);

2️⃣ Secondary Index

 Created on columns other than the primary key.

 Useful for frequent searches on non-key columns.

📌 Example:
sql

CopyEdit

CREATE INDEX idx_name ON employees(name);

3️⃣ Clustered Index

 The data is physically sorted based on the indexed column.

 Only one clustered index per table.

 Often used by default on the primary key.

📌 Example:
sql

CopyEdit

CREATE CLUSTERED INDEX idx_salary ON employees(salary);

4️⃣ Non-Clustered Index

 Index is stored separately from table data.

 Can create multiple non-clustered indexes on a table.

📌 Example:
sql

CopyEdit

CREATE NONCLUSTERED INDEX idx_dept ON employees(department_id);

5️⃣ Unique Index

 Enforces unique values in a column.

 Similar to a UNIQUE constraint.

📌 Example:
sql

CopyEdit

CREATE UNIQUE INDEX idx_email ON users(email);

6️⃣ Composite Index

 Indexes two or more columns together.

 Useful for queries using WHERE col1 AND col2.

📌 Example:
sql

CopyEdit

CREATE INDEX idx_name_dept ON employees(name, department_id);

7️⃣ B-Tree Index (Balanced Tree)

 Most common index type in DBMS.

 Keeps index balanced for O(log n) performance.

 Efficient for range and exact match queries.

8️⃣ Bitmap Index

 Uses bits instead of tree structure.

 Efficient for low-cardinality columns (e.g., gender, status).

📌 Example:

A column “gender” with values M or F:

text

CopyEdit

M → 1 0 1 0 0

F → 0 1 0 1 1

🆚 Clustered vs Non-Clustered Index

Feature Clustered Index Non-Clustered Index

Data Order Data is sorted with index Index is separate from data

Number per Table Only one Many allowed

Speed Faster for range queries Faster for direct lookup

✅ Advantages of Indexing

 Faster data retrieval

 Improves performance of WHERE, JOIN, ORDER BY, and GROUP BY

 Reduces I/O operations

❌ Disadvantages of Indexing

 Consumes extra storage
 Slower INSERT, DELETE, UPDATE due to index maintenance

 Too many indexes → degraded performance

🧱 Practical Example

Table:

sql

CopyEdit

CREATE TABLE products (

 id INT PRIMARY KEY,

 name VARCHAR(50),

 price DECIMAL(10, 2),

 category VARCHAR(20)

);

Create an index on price:

sql

CopyEdit

CREATE INDEX idx_price ON products(price);

Now a query:

sql

CopyEdit

SELECT * FROM products WHERE price > 500;

→ Will use idx_price for faster retrieval.

🧱 When to Use Indexing?

Use indexing on:

 Columns used frequently in WHERE, JOIN, or ORDER BY

 Large tables with many rows

 Columns with high selectivity (many unique values)

Avoid indexing:

 Small tables

 Columns with low cardinality (few unique values)

 Frequently updated columns

🧱 Summary Table

Index Type Key Feature Best Use Case

Primary Index Auto-created on primary key Uniquely identifying rows

Secondary Index On non-primary key columns Frequent queries on non-key fields

Clustered Data sorted with index Range queries

Non-Clustered Separate index General fast lookup

Unique Index Enforces uniqueness Email, ID, etc.

Composite Index Multiple columns Combined WHERE conditions

Bitmap Index Bit representation Low-cardinality fields

Hashing techniques

🔐 Hashing Techniques in DBMS

What is Hashing?

Hashing is a technique to directly access data in a database by computing the address of the

data from its key using a hash function. It converts a search key into a hash value (an

address or bucket number), enabling fast data retrieval.

Why Use Hashing?

 To avoid scanning entire files.

 To achieve constant time, O(1), average-case data access.

 Efficient for equality searches (e.g., find record with key = 123).

How Hashing Works?

1. A hash function h(k) takes a search key k and returns an address (bucket number).

2. The record with key k is stored at the address h(k).

3. When searching, apply the hash function and directly access the bucket.

Characteristics of Hashing

Feature Description

Direct Access Hash function maps key → bucket address

Efficient Search Average O(1) time for search

Works Best for Equality search (WHERE key = value)

Poor for Range queries (WHERE key BETWEEN a AND b)

Types of Hashing Techniques

1. Static Hashing

 The number of buckets is fixed.

 Hash function maps keys to these fixed buckets.

 Problem: Overflow buckets if many keys map to the same bucket.

2. Dynamic Hashing

 Number of buckets can grow or shrink dynamically.

 Good for databases with frequent insertions/deletions.

 Examples: Extendible hashing, Linear hashing.

1️⃣ Static Hashing Details

 Use hash function like:
h(k) = k mod N

where N is the fixed number of buckets.

 If multiple keys hash to same bucket → Collision occurs.

 Collisions handled by:

o Chaining (linked list of records per bucket)

o Open addressing (probing)

Example:

text

CopyEdit

Keys: 12, 22, 32, 42

Buckets: 5

h(k) = k mod 5

12 mod 5 = 2 → Bucket 2

22 mod 5 = 2 → Bucket 2 (collision with 12)

32 mod 5 = 2 → Bucket 2 (collision again)

42 mod 5 = 2 → Bucket 2 (collision again)

So, bucket 2 contains 4 records → overflow!

2️⃣ Dynamic Hashing Techniques

a. Extendible Hashing

 Uses a directory with pointers to buckets.

 Directory size grows with data.

 Hash function uses first i bits of the key.

 When bucket overflows, split bucket and possibly double directory size.

Example:

 Initial directory size: 2^1 = 2 entries.

 If bucket overflows, directory doubles → 2^2 = 4 entries.

b. Linear Hashing

 Buckets are split one at a time.

 Hash function changes gradually.

 No need for directory doubling.

Collision Handling Techniques

1. Chaining (Separate Chaining)

 Each bucket contains a linked list of records that hash to it.

 Easy to implement, handles overflow gracefully.

2. Open Addressing

 All records stored in the bucket array.

 If collision, find next available bucket by probing:

o Linear probing: next bucket sequentially

o Quadratic probing: jumps quadratically

o Double hashing: uses second hash function to find next bucket

Example of Chaining

Bucket Records

0

1 11 → 21 → 31

2 12 → 22

3 13

4

Advantages of Hashing

 Fast data retrieval for equality searches.

 Efficient for large datasets.

 Simple collision resolution methods.

Disadvantages of Hashing

 Poor performance for range queries.

 Handling collisions can add complexity.

 Static hashing suffers from overflow.

 Dynamic hashing requires extra overhead to manage directory or bucket splits.

Summary Table

Hashing Type Description Pros Cons

Static Hashing
Fixed buckets, fixed hash

fn
Simple, fast for small data Overflow, inflexible

Extendible

Hashing

Directory-based dynamic

size

Grows dynamically, less

overflow
Directory overhead

Linear Hashing
Incremental bucket

splitting
Smooth expansion, simple Slightly complex logic

Chaining Linked list per bucket Handles overflow well Extra memory for pointers

Hashing Type Description Pros Cons

Open Addressing Probe for next free slot Space efficient
Clustering, more probes

needed

Sample SQL Example (conceptual)

Assume you want to simulate hashing on a column student_id:

sql

CopyEdit

-- Create hash index (some DBMS support it)

CREATE INDEX idx_student_hash ON students(student_id) USING HASH;

Queries like:

sql

CopyEdit

SELECT * FROM students WHERE student_id = 1234;

Use the hash index for fast lookup.

B+ Trees

🌳 B+ Trees in DBMS

What is a B+ Tree?

A B+ Tree is a balanced tree data structure widely used in DBMS for indexing large

amounts of data. It maintains sorted data and allows efficient insertion, deletion, and search

operations.

Why B+ Tree?

 Ideal for disk-based storage (minimizes disk reads).

 Supports range queries efficiently.

 Guarantees logarithmic height, ensuring fast access.

Structure of B+ Tree

 It is a multi-level index.

 Consists of:

o Internal nodes: store keys and pointers to child nodes.

o Leaf nodes: store actual data pointers or records.

 All data records are stored only in leaf nodes.

 Leaf nodes are linked together as a linked list for efficient range queries.

 Internal nodes store keys to guide searches, but no actual data.

Key Properties

 A B+ Tree of order m satisfies:

o Each internal node can have at most m children.

o Each internal node (except root) has at least ⌈m/2⌉ children.

o All leaf nodes are at the same level (balanced).

o Leaf nodes store between ⌈(m-1)/2⌉ and (m-1) keys.

o Internal nodes store ⌈m/2⌉ - 1 to m - 1 keys.

Visual Representation (Example: B+ Tree of order 4)

less

CopyEdit

 [30 | 60]

 / | \

 [10|20] [40|50] [70|80|90]

 / \ / \ / | \

 Leaf Leaf Leaf Leaf Leaf Leaf Leaf

 Internal nodes have up to 3 keys (order 4 means max 4 children).

 Leaves contain actual data pointers.

 Leaves linked for range queries.

Operations on B+ Tree

1. Search

 Start at root.

 Compare search key with keys in node.

 Follow pointer to correct child.

 Repeat until reaching leaf.

 Search leaf node for key.

Cost: O(logₘ n), where n is number of keys, m is order.

2. Insertion

 Insert key in correct leaf node.

 If leaf node overflows (exceeds max keys), split the leaf.

 Middle key moves up to parent.

 If parent overflows, split recursively.

 May cause root to split → tree height increases by 1.

3. Deletion

 Remove key from leaf node.

 If underflow occurs (fewer than minimum keys), try to borrow from sibling.

 If borrowing not possible, merge with sibling.

 Update parent keys accordingly.

 May cause recursive merging up to root.

Advantages of B+ Tree

 All data at leaf level → internal nodes smaller → more keys per node → shallower

tree.

 Efficient range queries because leaves are linked.

 Balanced tree → guaranteed performance.

 Disk-friendly: nodes sized to disk blocks.

Comparison with B-Tree

Feature B-Tree B+ Tree

Data storage Keys and data in all nodes Data stored only in leaves

Leaf nodes linked No Yes

Range queries Less efficient More efficient

Tree height Usually taller Usually shorter

Example Scenario

Suppose a B+ tree index is created on a Student_ID column in a students table. When a

query searches for Student_ID = 105, the B+ tree is traversed from root to leaf to find the

pointer to the record.

Range queries like Student_ID BETWEEN 100 AND 200 can efficiently scan linked leaf

nodes without traversing back up.

Summary Table

Term Description

Order (m) Max children per internal node

Internal Node Stores keys and pointers, no data

Leaf Node Stores actual data pointers or records

Balanced All leaves at same depth

Height O(logₘ n), small for large datasets

Linked Leaves Enables efficient range queries

Pseudocode: Search in B+ Tree

text

CopyEdit

function BPlusTreeSearch(node, key):

 if node is leaf:

 return search key in leaf records

 else:

 for i in keys of node:

 if key < keys[i]:

 return BPlusTreeSearch(child[i], key)

 return BPlusTreeSearch(last_child, key)

🔍 Query Processing

🔍 Query Processing in DBMS

Query processing is the series of steps that a Database Management System (DBMS) follows

to execute a user query and retrieve the desired results efficiently.

Why Query Processing?

 Users write queries in high-level languages like SQL.

 DBMS needs to interpret, optimize, and execute queries.

 Efficient query processing improves system performance.

Main Goals of Query Processing

 Translate the query into an efficient internal form.

 Optimize the query execution plan.

 Minimize resource usage (CPU, memory, disk I/O).

 Return correct results quickly.

Stages of Query Processing

1. Parsing and Translation

 The DBMS checks query syntax and semantics.

 Translates SQL query into an internal representation (e.g., relational algebra or

query tree).

Example:

sql

CopyEdit

SELECT name FROM students WHERE age > 20;

 Translated to relational algebra:
π_name(σ_age>20(students))

2. Query Optimization

 Generate different query execution plans (strategies).

 Estimate cost of each plan (based on I/O, CPU, memory).

 Choose the least costly plan.

Example: Join order, choice of indexes, access methods.

3. Query Evaluation (Execution)

 Execute the chosen query plan.

 Access the database files, perform joins, selections, projections.

 Return the result to the user.

Important Concepts in Query Processing

a) Query Tree

 A tree representing relational algebra operations.

 Leaves: relations (tables)

 Internal nodes: operations (selection, projection, join)

b) Query Optimization Techniques

 Heuristic Optimization: Use rules like push selections down, combine projections.

 Cost-Based Optimization: Use statistics (table size, indexes) to estimate cost.

 Join Order Optimization: Reorder joins for efficiency.

Query Execution Example

Given the query:

sql

CopyEdit

SELECT S.name, C.course_name

FROM Students S, Enrollments E, Courses C

WHERE S.student_id = E.student_id AND E.course_id = C.course_id AND S.age >

20;

Execution Steps:

1. Join Students and Enrollments on student_id.

2. Join result with Courses on course_id.

3. Select students with age > 20.

4. Project name and course_name.

Query Processing Example: Using Index

If Students table has an index on age:

 Use index to find students with age > 20 quickly.

 Then join filtered students with Enrollments.

 Then join with Courses.

Query Execution Plans

 Nested Loop Join: For each row in outer table, scan inner table.

 Sort-Merge Join: Sort both tables on join key, then merge.

 Hash Join: Build hash table on smaller relation, probe with larger.

Summary Table

Stage Description

Parsing & Translation Syntax check, convert to relational algebra

Optimization Choose best plan via heuristics or cost

Execution Perform operations, return result

Key Takeaways

 Query processing transforms SQL into efficient low-level operations.

 Query optimization is critical for performance.

 Different join algorithms exist for different scenarios.

 Indexes can drastically improve query speed.

Query Optimization

🚀 Query Optimization in DBMS

Query optimization is the process of selecting the most efficient way to execute a given query

by considering possible query plans.

Why Query Optimization?

 Multiple ways to execute the same query.

 Different execution strategies have different costs.

 Goal: minimize resource usage (CPU, memory, I/O) and response time.

Key Components of Query Optimization

1. Query Execution Plan (QEP)

 A roadmap of operations to execute the query.

 Includes order of operations, join methods, access paths.

2. Cost Estimation

 Cost depends on CPU, disk I/O, network usage.

 DBMS uses statistics like table size, indexes, data distribution.

 Goal: estimate cost of each plan to choose the cheapest.

Types of Query Optimization

a) Heuristic Optimization

 Uses rules or heuristics (experience-based rules).

 Example heuristics:

o Push selections (WHERE) as close to base tables as possible.

o Perform projections early to reduce tuple size.

o Join smaller tables first.

b) Cost-Based Optimization

 Considers cost of each possible execution plan.

 Uses statistics to estimate cost.

 Explores different join orders, access methods.

 Picks plan with least estimated cost.

Query Optimization Steps

1. Parsing & translation → Generate query tree (relational algebra).

2. Apply heuristics → Rewrite query tree to reduce cost.

3. Generate alternative plans → Different join orders, methods.

4. Estimate cost of each plan.

5. Select best plan for execution.

Important Concepts

a) Selection Pushdown

 Move selection operations down the tree to reduce intermediate results.

b) Join Ordering

 Reorder joins to reduce size of intermediate results.

 For example, join smaller relations first.

Example Query

sql

CopyEdit

SELECT *

FROM Employees E, Departments D, Projects P

WHERE E.dept_id = D.dept_id AND D.project_id = P.project_id AND E.salary >

50000;

Possible Join Orders:

 (E JOIN D) JOIN P
 (D JOIN P) JOIN E
 (E JOIN P) JOIN D

Each order might have different costs based on table sizes and indexes.

Using Selection Pushdown

Apply E.salary > 50000 before join to filter employees first, reducing tuples early.

Join Algorithms and Cost Impact

Join Algorithm Description When to Use

Nested Loop Join For each row in outer, scan inner Small tables or indexes exist

Sort-Merge Join Sort both inputs, then merge Large sorted data

Hash Join Build hash on smaller table, probe larger Large unsorted tables

Cost Estimation Factors

 Number of tuples in tables.

 Number of tuples after selection.

 Presence of indexes.

 I/O cost to read pages.

 CPU cost for processing tuples.

Summary Table

Optimization Technique Description

Selection Pushdown Apply WHERE early to reduce data

Projection Pushdown Reduce columns early

Join Reordering Change join order to reduce intermediate sizes

Use of Indexes Use indexes for faster data access

Example: Heuristic Optimization

Given:

sql

CopyEdit

SELECT name FROM Employees WHERE salary > 50000;

 Instead of scanning entire Employees table, apply selection first using an index on

salary.

 If index exists, use index scan → faster retrieval.

– Cost estimation

📊 Cost Estimation in DBMS

What is Cost Estimation?

Cost estimation is the process by which the DBMS query optimizer estimates the resource

usage (cost) of different query execution plans. The optimizer uses these estimates to choose

the most efficient plan.

Why Cost Estimation?

 Many query execution plans exist for the same SQL query.

 Cost estimation helps predict which plan will run fastest and use fewer resources.

 Resources considered: disk I/O, CPU time, memory usage, network costs.

Components of Cost

Component Description

I/O Cost Cost to read/write data blocks from/to disk (usually dominant cost).

CPU Cost Cost of processing tuples, comparisons, joins, etc.

Memory Cost Cost related to memory usage for sorting, hashing, buffering.

Cost Model Basics

 DBMS uses a cost model to estimate costs.

 Usually disk I/O cost dominates, so it’s the main factor.

 Costs are estimated, not exact.

 Statistics like number of tuples, tuple size, index selectivity used.

Important Statistics for Cost Estimation

Statistic Meaning

Cardinality (N) Number of tuples in a relation

Tuple size (T) Average size of each tuple (in bytes)

Selectivity (S) Fraction of tuples qualifying a predicate (0 ≤ S ≤ 1)

Number of pages (P) Number of disk pages relation occupies

Example: Cost Estimation for Selection

Query:

sql

CopyEdit

SELECT * FROM Employees WHERE salary > 50000;

 Employees table has 10,000 tuples.

 Average tuple size = 100 bytes.

 Disk page size = 4 KB.

 Number of pages = (10,000 * 100) / 4096 ≈ 245 pages.

 Selectivity of salary > 50000 is 0.1 (10%).

Cost Estimate:

 Full table scan cost: Reading all 245 pages → 245 I/O.

 Using index: Assume index is a B+ tree with height 3.

o Traverse index: 3 I/O.

o Retrieve matching tuples: 10% of 10,000 = 1,000 tuples.

o Suppose these 1,000 tuples spread over 500 pages.

o Total cost ≈ 3 + 500 = 503 I/O (more than full scan, so may choose full scan).

Cost Estimation for Joins

Nested Loop Join

Cost =
Cost(outer) + (Number of tuples in outer) * Cost(inner)

If outer relation has 1000 tuples and inner requires scanning 2000 pages:

Cost = Cost(outer) + 1000 * Cost(inner)

If Cost(outer) = 100 pages, Cost(inner) = 2000 pages,

Total cost = 100 + 1000*2000 = 2,000,100 pages (very high).

Sort-Merge Join

Cost =
Cost(sort outer) + Cost(sort inner) + Cost(merge)

 Sorting cost depends on number of pages and available memory.

 Merge cost is linear in total pages.

Hash Join

Cost =
Cost(build hash table on smaller relation) + Cost(probe hash with larger

relation)

Summary Table of Cost Components

Operation Cost Formula Notes

Full Table Scan Number of pages in table
Simple, but expensive on large

tables

Index Scan
Height of index + number of pages for

tuples
Effective if selective

Nested Loop

Join

Cost(outer) + (tuples in outer) *

Cost(inner)
Expensive if both large

Sort-Merge Join
Cost(sort outer) + Cost(sort inner) +

Cost(merge)
Efficient for large sorted data

Hash Join Cost(build hash) + Cost(probe) Efficient for large unsorted data

Practical Example

Suppose:

 Relation R: 1000 tuples, 100 pages.

 Relation S: 500 tuples, 50 pages.

Estimate Nested Loop Join (R as outer):

 Cost(R) = 100 pages.

 Cost(S) = 50 pages.

 Total cost = 100 + 1000 * 50 = 50,100 pages.

Estimate Hash Join:

 Build hash on smaller S: 50 pages.

 Probe R: 100 pages.

 Total cost = 50 + 100 = 150 pages → Much cheaper.

Conclusion

 Cost estimation relies heavily on statistics and heuristics.

 Accurate statistics improve plan choice.

 Disk I/O generally dominates cost.

 Cost estimation enables the optimizer to pick efficient query plans.

Query execution plan in dbms

📋 Query Execution Plan (QEP) in DBMS

What is a Query Execution Plan?

A Query Execution Plan (QEP) is a detailed roadmap or blueprint that the Database

Management System (DBMS) creates to execute a SQL query efficiently. It shows the

sequence of operations, access methods, join algorithms, and data retrieval strategies that the

DBMS will follow to produce the result.

Why is Query Execution Plan Important?

 The same SQL query can be executed in multiple ways.

 Different plans may have vastly different performance.

 The DBMS optimizer generates multiple possible plans and selects the most cost-

effective plan.

 Understanding QEP helps database developers optimize queries and improve

performance.

Components of a Query Execution Plan

Component Description

Access Methods How data is accessed — full table scan, index scan, etc.

Join Methods Algorithms for joining tables — nested loops, hash join, merge join

Operation Order The sequence of operations like filtering, joining, sorting

Cost Estimation Estimated resource cost for each operation and total plan

Output Rows Estimated number of rows at each step

How is QEP Represented?

 Usually represented as a tree or hierarchical plan.

 Leaves are base table access (scans, index reads).

 Internal nodes are relational operations (joins, filters).

 The plan flows bottom-up, with the final output at the root.

Example 1: Simple Query Execution Plan

SQL Query:

sql

CopyEdit

SELECT name FROM Employees WHERE age > 30;

Possible QEP steps:

1. Use an index scan on the age column (if an index exists).

2. Retrieve the name column for the qualifying rows.

3. Return the result set.

If no index exists, a full table scan may be done instead.

Example 2: Join Query Execution Plan

SQL Query:

sql

CopyEdit

SELECT E.name, D.dept_name

FROM Employees E

JOIN Departments D ON E.dept_id = D.dept_id

WHERE E.salary > 50000;

Possible QEP:

 Step 1: Filter Employees where salary > 50000 using an index or scan.

 Step 2: Access Departments table (full scan or index scan).

 Step 3: Join Employees and Departments on dept_id using:

o Nested Loop Join (for small tables or indexed joins),

o Hash Join (for large unsorted tables),

o Sort-Merge Join (if tables are sorted).

 Step 4: Project columns name and dept_name.

 Step 5: Return results.

Common Operations in QEP

Operation Description

Table Scan Sequentially reads all rows in the table

Index Scan Uses index to access only qualifying rows

Filter Applies WHERE clause conditions

Projection Selects specific columns

Join Combines rows from multiple tables

Sort Sorts rows for ORDER BY or merge joins

Aggregation Computes aggregates like SUM, COUNT

Join Algorithms in QEP

Join Type Description Best For

Nested Loop

Join
For each row in outer table, scan inner table

Small datasets, indexed

joins

Sort-Merge Join Sort both tables, then merge based on join keys Large sorted tables

Hash Join
Build hash table on smaller table, probe with

larger
Large unsorted tables

Tools to View QEP

 Oracle: EXPLAIN PLAN FOR <SQL> + SELECT * FROM
TABLE(DBMS_XPLAN.DISPLAY());

 MySQL: EXPLAIN <SQL>

 PostgreSQL: EXPLAIN ANALYZE <SQL>

 SQL Server: Graphical execution plan or SET SHOWPLAN_XML ON

Sample Output of EXPLAIN (MySQL)

sql

CopyEdit

EXPLAIN SELECT * FROM Employees WHERE age > 30;

id select_type table type possible_keys key rows Extra

1 SIMPLE Employees range age_index age_index 100 Using where

 type: Access method (range means index range scan).

 key: Index used.

 rows: Estimated rows scanned.

 Extra: Additional info.

Summary Table

Aspect Details

Purpose Plan how DBMS executes the query

Representation Tree or step-by-step operations

Key Components Access methods, join methods, filters, projections

Importance Performance tuning and optimization

Tools EXPLAIN commands in various DBMS

Performance tuning

⚡ Performance Tuning in DBMS

Performance tuning in DBMS refers to the process of improving the efficiency and speed of

database operations such as queries, transactions, and overall system throughput. The goal is

to reduce response time, optimize resource usage, and handle larger loads effectively.

Why Performance Tuning is Important?

 Databases often handle large volumes of data and complex queries.

 Poorly tuned databases can lead to slow response times.

 Efficient performance enhances user experience and system scalability.

 Reduces hardware costs by making better use of existing resources.

Key Areas of Performance Tuning

1. Query Tuning

 Optimize SQL queries to reduce execution time.

 Use proper indexing.

 Avoid unnecessary columns and rows in SELECT.

 Rewrite queries for efficiency (e.g., using joins instead of subqueries).

 Analyze query execution plans and optimize bottlenecks.

Example:

Avoid SELECT * when only specific columns are needed:

sql

CopyEdit

SELECT name, salary FROM Employees WHERE dept_id = 10;

2. Index Tuning

 Create indexes on columns used in WHERE clauses, JOINs, ORDER BY.

 Drop unused indexes to reduce overhead.

 Use composite indexes when multiple columns are often used together.

Example:

Index on salary for quick filtering:

sql

CopyEdit

CREATE INDEX idx_salary ON Employees(salary);

3. Database Design Tuning

 Normalize to reduce redundancy, or denormalize for performance if needed.

 Partition large tables for better I/O performance.

 Use appropriate data types and constraints.

4. Memory and Cache Tuning

 Allocate adequate memory to buffer pools and caches.

 Tune cache sizes to reduce disk I/O.

 Use database features like query result caching.

5. Configuration and Resource Tuning

 Configure DBMS parameters for connection pooling, parallelism.

 Optimize transaction log size and disk placement.

 Balance workload across CPUs and disks.

6. Locking and Concurrency Control

 Minimize locking contention by using appropriate isolation levels.

 Use row-level locking instead of table-level when possible.

 Avoid long transactions.

Performance Tuning Tools in DBMS

 Explain Plan / Query Plan Analyzers: Visualize execution plans.

 Profiler and Trace Tools: Monitor query execution time and resource usage.

 Statistics Collector: Provides data about table size, index usage.

 Automated Tuning Advisors: Some DBMS have advisors recommending tuning

actions.

Example: Query Performance Tuning

Original query:

sql

CopyEdit

SELECT * FROM Orders WHERE customer_id IN (SELECT customer_id FROM

Customers WHERE city = 'New York');

 This uses a subquery, which can be inefficient.

Tuned query:

sql

CopyEdit

SELECT O.*

FROM Orders O

JOIN Customers C ON O.customer_id = C.customer_id

WHERE C.city = 'New York';

 Using a JOIN often improves performance.

Example: Index Usage

Suppose you often query:

sql

CopyEdit

SELECT * FROM Employees WHERE department = 'Sales' AND salary > 50000;

Indexing:

sql

CopyEdit

CREATE INDEX idx_dept_salary ON Employees(department, salary);

 Composite index speeds up queries filtering on both columns.

Summary Table

Tuning Area Techniques

Query Tuning Optimize SQL, rewrite queries, use EXPLAIN

Index Tuning Create/drop indexes, use composite indexes

Database Design Normalize/denormalize, partitioning

Memory & Cache Allocate buffer pools, cache tuning

Configuration Tune DB parameters, parallelism, logging

Locking & Concurrency Use appropriate isolation levels, minimize locks

Distributed databases

What is a Distributed Database?

A Distributed Database is a collection of multiple, logically interrelated databases

distributed over a computer network. Each site (node) stores part or whole of the database

and is capable of processing queries independently or cooperatively.

Key Characteristics

 Data Distribution: Data is stored across multiple physical locations (sites).

 Autonomy: Each site can operate independently.

 Transparency: The system hides the complexity of distribution from users (location

transparency, replication transparency).

 Reliability & Availability: Failure at one site doesn't affect the entire system.

 Scalability: Easily add new sites to the system.

Types of Distributed Databases

Type Description

Homogeneous All sites use the same DBMS software.

Heterogeneous Different DBMS software at different sites.

Data Distribution Strategies

Strategy Description Example

Fragmentation
Break database into smaller pieces

(fragments).
Horizontal or vertical fragmentation

Replication
Copy entire or part of database at

multiple sites.
Full or partial replication

Strategy Description Example

Allocation
Combination of fragmentation and

replication.

Different fragments replicated at

different sites

Types of Fragmentation

 Horizontal Fragmentation: Partition table rows based on some condition.

Example: Employee table split by department.

 Vertical Fragmentation: Partition table columns.

Example: Employee table split into (Employee_ID, Name) and (Employee_ID,

Salary).

 Hybrid Fragmentation: Combination of horizontal and vertical.

Advantages of Distributed Databases

 Improved reliability and availability.

 Localized data access improves performance.

 Parallel processing capabilities.

 Better scalability and flexibility.

Challenges in Distributed Databases

 Complexity in design and management.

 Ensuring data consistency across sites.

 Distributed transaction management.

 Query processing and optimization over network.

 Handling network failures and synchronization.

Example Scenario

Consider a multinational company with branches in New York and London.

 Employees data in New York branch is stored in the New York site.

 Employees data in London branch is stored in the London site.

 Queries accessing local data are fast.

 Some queries need data from both sites and involve distributed joins.

Example: Horizontal Fragmentation

Employee table

EmpID Name Dept Location

101 Alice Sales New York

102 Bob HR London

103 Carol Sales New York

104 Dave IT London

Fragmentation:

 Fragment 1 (New York): Rows where Location = 'New York'

 Fragment 2 (London): Rows where Location = 'London'

Each fragment stored in respective site.

Distributed Query Processing

When a query accesses distributed data, the DBMS:

 Decomposes the query into sub-queries.

 Executes sub-queries locally at relevant sites.

 Transfers and combines results.

Distributed Transaction Management

 Ensures ACID properties across multiple sites.

 Uses protocols like Two-Phase Commit (2PC) to maintain atomicity and

consistency.

Summary Table

Aspect Description

Definition Database spread over multiple sites

Types Homogeneous, Heterogeneous

Data Distribution Fragmentation, Replication, Allocation

Advantages Reliability, Availability, Performance

Challenges Complexity, Consistency, Transaction Mgmt

Query Processing Distributed execution and result merging

NoSQL databases

What is NoSQL?

NoSQL (Not Only SQL) databases are a category of database management systems designed

to handle large volumes of diverse and rapidly changing data that do not fit well into

traditional relational database schemas.

 They provide flexible schema designs.

 Often used for big data, real-time web applications, and unstructured data.

 Designed for scalability, high availability, and distributed architectures.

Why NoSQL?

 Traditional RDBMS are limited by rigid schemas and scalability issues.

 NoSQL offers:

o Schema flexibility (can handle semi-structured or unstructured data).

o Horizontal scaling across commodity servers.

o High throughput and low latency.

o Support for diverse data types.

Types of NoSQL Databases

Type Description Examples

Document

Store

Store data as JSON-like documents (key-value pairs

with nested data).

MongoDB,

CouchDB

Key-Value

Store
Data stored as simple key-value pairs. Redis, DynamoDB

Column

Family

Store data in columns rather than rows; good for

analytical queries.
Cassandra, HBase

Graph

Database

Model data as nodes and edges; ideal for

relationships.

Neo4j, Amazon

Neptune

Characteristics of NoSQL

Feature Description

Schema-less Data can be stored without a fixed schema.

Scalability Built to scale horizontally across many servers.

High Availability Designed for distributed environments and fault tolerance.

Flexible Data Models Support for diverse data formats (documents, graphs, etc.).

Eventually Consistent Some NoSQL systems relax strict ACID guarantees for scalability.

Example: Document Store (MongoDB)

json

CopyEdit

{

 "_id": "1001",

 "name": "Alice",

 "age": 30,

 "skills": ["Python", "MongoDB", "Node.js"],

 "address": {

 "street": "123 Maple St",

 "city": "New York",

 "zip": "10001"

 }

}

 Data stored as a document (JSON-like).

 Nested fields and arrays are supported.

 Query language is flexible and powerful.

Example: Key-Value Store (Redis)

 Stores data as pairs: key -> value.

 Example: Store user session data.

plaintext

CopyEdit

SET user:1001 "session_data_here"

GET user:1001

Advantages of NoSQL

 Handles large volumes of structured, semi-structured, and unstructured data.

 Flexible data models adapt to application needs.

 Designed for distributed and cloud environments.

 High performance for specific use cases (e.g., caching, real-time analytics).

 Easier to evolve application data over time without migrations.

Disadvantages of NoSQL

 Lack of standardization compared to SQL.

 Limited support for complex transactions (some provide eventual consistency).

 Learning curve and tooling ecosystem can be immature.

 Not always suitable for applications requiring strong ACID compliance.

Use Cases for NoSQL

 Social networks (storing user profiles, connections).

 Real-time analytics.

 Content management systems.

 IoT data storage.

 Caching layers.

Summary Table

Aspect Details

Definition Non-relational, schema-flexible databases

Types Document, Key-Value, Column, Graph

Strengths Scalability, flexibility, high performance

Weaknesses Limited ACID, no standard query language

Use Cases Big data, real-time apps, flexible schema apps

Data Warehousing –

What is Data Warehousing?

A Data Warehouse (DW) is a centralized repository that stores large volumes of historical

data collected from multiple heterogeneous sources for the purpose of query, analysis, and

reporting.

 It supports decision making by providing a consolidated view of organizational data.

 Data is integrated, cleaned, and structured specifically for analysis.

 Typically used in Business Intelligence (BI) and analytics.

Key Features of Data Warehouse

Feature Description

Subject-Oriented Organized around key subjects like sales, customers, products.

Integrated Data from various sources is combined into a consistent format.

Non-volatile Data is stable and not frequently updated or deleted.

Time-variant Maintains historical data with time stamps for trend analysis.

Supports Complex

Queries

Optimized for read-heavy operations and complex analytical

queries.

Architecture of Data Warehouse

1. Data Sources: Operational databases, external sources.

2. ETL Process: Extraction, Transformation, and Loading of data into the warehouse.

3. Data Warehouse Storage: Central repository for integrated data.

4. Metadata: Data about data — schema, definitions.

5. Query Tools & OLAP: Tools for reporting, querying, and multidimensional analysis.

6. Users: Decision-makers, analysts, business users.

Types of Data Warehouse

Type Description

Enterprise Data Warehouse

(EDW)
Centralized data warehouse for entire organization.

Data Mart
Subset of data warehouse focused on a specific business line

or department.

Data Modeling in Data Warehouse

 Uses Star Schema or Snowflake Schema for organizing data.

Star Schema:

 Central Fact Table containing measures (e.g., sales amount).

 Multiple Dimension Tables with descriptive attributes (e.g., date, product, customer).

Example:

Fact Table: Sales

sale_id, date_id, product_id, customer_id, amount

| Dimension Tables: Date, Product, Customer |

OLAP vs OLTP

Aspect OLAP (Data Warehouse) OLTP (Operational DB)

Purpose Analysis, reporting, decision making Transaction processing

Data Volume Large, historical Smaller, current

Query Type Complex, read-intensive Simple, write-intensive

Schema Denormalized (star/snowflake) Highly normalized

Example Scenario

A retail company wants to analyze sales trends over several years.

 Data from stores, online sales, and suppliers are collected.

 ETL process consolidates and cleans the data.

 Data warehouse stores sales facts and dimensions.

 Analysts query data warehouse for sales by region, product, time period.

Benefits of Data Warehousing

 Improved data quality and consistency.

 Faster query performance for complex analyses.

 Historical intelligence enables better forecasting.

 Supports strategic decision making.

Example: Simple Star Schema Query

sql

CopyEdit

SELECT p.product_name, SUM(f.amount) AS total_sales

FROM Sales_Fact f

JOIN Product_Dim p ON f.product_id = p.product_id

WHERE f.date_id BETWEEN '2023-01-01' AND '2023-12-31'

GROUP BY p.product_name;

 This query summarizes total sales per product for a year.

Summary Table

Aspect Details

Definition Central repository for integrated historical data

Key Features Subject-oriented, integrated, time-variant, non-volatile

Architecture Data sources, ETL, warehouse, metadata, OLAP tools

Data Models Star Schema, Snowflake Schema

Use Cases Business Intelligence, Reporting, Analytics

OLAP and OLTP

What is OLTP?

Online Transaction Processing (OLTP) systems are designed to manage day-to-day

transactional data and support routine business operations.

 Handles large number of short online transactions (INSERT, UPDATE, DELETE).

 Focuses on fast query processing and maintaining data integrity in multi-access

environments.

 Uses highly normalized database design to reduce redundancy.

Examples: Banking systems, retail sales, airline booking systems.

What is OLAP?

Online Analytical Processing (OLAP) systems are designed for complex queries, data

analysis, and decision making.

 Focuses on read-intensive queries with complex aggregations and summaries.

 Works with historical and consolidated data.

 Uses denormalized schemas (like star or snowflake schema) for faster query response.

Examples: Business intelligence, sales forecasting, market research.

Key Differences Between OLTP and OLAP

Feature OLTP OLAP

Purpose Manage daily transactions Support complex analytical queries

Data Volume Small transactions, current data Large volumes, historical data

Query

Complexity
Simple queries (e.g., single record) Complex queries with aggregations

Database Design Highly normalized schema
Denormalized schema (star,

snowflake)

Transaction Type Insert, update, delete Select (read-only)

Response Time Fast for individual transactions
Longer, but optimized for complex

queries

Examples
ATM transactions, order entry

systems

Sales analysis, budgeting, trend

analysis

OLTP System Example

A banking application processes transactions like:

 Withdrawals

 Deposits

 Transfers

Each transaction updates the customer’s account balance instantly.

sql

CopyEdit

UPDATE accounts

SET balance = balance - 500

WHERE account_id = 12345;

 This is a quick, atomic transaction.

OLAP System Example

A retail company wants to analyze sales over several years:

sql

CopyEdit

SELECT product_category, SUM(sales_amount) AS total_sales, YEAR(sales_date)

AS year

FROM sales_fact

GROUP BY product_category, YEAR(sales_date);

 This aggregates large amounts of historical data.

 Enables managers to identify sales trends by category and year.

OLTP vs OLAP: Data Modeling

 OLTP: ER model with normalized tables to reduce redundancy.

 OLAP: Dimensional modeling (star or snowflake schema) with fact and dimension

tables.

Summary Table

Aspect OLTP OLAP

Data Current, detailed Historical, summarized

Users Clerks, front-line workers Executives, analysts

Updates Frequent, many Rare

Data Size Small Very large

Typical Operations Insert, Update, Delete Complex Select (aggregate queries)

Schema Design Normalized Denormalized

Big Data and Cloud Databases

1. Big Data in DBMS

What is Big Data?

Big Data refers to extremely large and complex datasets that traditional database management

tools cannot handle efficiently. These datasets come from various sources such as social

media, sensors, transactions, and logs.

Characteristics of Big Data (The 5 Vs)

V Description

Volume Massive amount of data (terabytes to petabytes)

Velocity High speed of data generation and processing

Variety Diverse data types: structured, semi-structured, unstructured

Veracity Uncertainty or reliability of data

Value Useful insights extracted from the data

Challenges of Big Data

 Storing huge volumes efficiently.

 Processing and analyzing in real-time or near-real-time.

 Integrating heterogeneous data sources.

 Ensuring data quality and security.

Big Data Technologies

 Hadoop Ecosystem: Distributed storage (HDFS) + processing (MapReduce, YARN).

 NoSQL Databases: Handle unstructured or semi-structured data.

 Spark: Fast in-memory data processing framework.

Example Scenario

 A social media platform generates terabytes of user interaction data daily.

 Using Big Data tools, they analyze user behavior to target advertisements.

2. Cloud Databases in DBMS

What is a Cloud Database?

A Cloud Database is a database service built, deployed, and accessed via cloud computing

platforms. It provides database capabilities without the need to manage physical hardware or

infrastructure.

Types of Cloud Databases

Type Description Examples

Relational Cloud DB
Traditional SQL databases hosted on

cloud
Amazon RDS, Google Cloud SQL

NoSQL Cloud DB
NoSQL databases designed for

scalability

Amazon DynamoDB, Azure

Cosmos DB

Data Warehouse as a

Service

Cloud data warehouses optimized for

analytics
Snowflake, Google BigQuery

Advantages of Cloud Databases

 Scalability: Scale resources up/down easily.

 Cost Efficiency: Pay-as-you-go pricing models.

 High Availability: Built-in redundancy and failover.

 Managed Services: Automated backups, patching, and maintenance.

 Global Accessibility: Accessible from anywhere.

Challenges of Cloud Databases

 Data security and compliance.

 Network latency.

 Vendor lock-in concerns.

 Data migration complexities.

Big Data and Cloud Database Integration

 Big Data workloads increasingly run on cloud platforms.

 Cloud storage services (like AWS S3) integrate with big data processing frameworks.

 Cloud databases offer scalable backends for big data applications.

Example: Using Amazon Web Services (AWS)

 Amazon S3: Stores massive amounts of unstructured data.

 Amazon EMR: Runs Hadoop and Spark clusters for big data processing.

 Amazon Redshift: Cloud data warehouse for fast analytics.

 Amazon DynamoDB: NoSQL cloud database for low-latency applications.

Summary Table

Aspect Big Data Cloud Databases

Data Type Massive, varied (structured/unstructured) Managed database service on cloud

Storage Distributed file systems (HDFS, S3) Cloud storage with managed DB instances

Processing Batch & real-time (MapReduce, Spark)
Query & transaction processing in cloud

DB

Scalability
Horizontal scaling over commodity

hardware
Elastic scaling via cloud infrastructure

Examples Hadoop, Spark, NoSQL DB Amazon RDS, DynamoDB, Google BigQuery

Use Cases Data analytics, machine learning, IoT Web apps, mobile backends, BI reporting

Database Security

What is Database Security?

Database Security refers to the range of measures, controls, and practices designed to protect

the database from unauthorized access, misuse, damage, or loss. It ensures the confidentiality,

integrity, and availability of data stored in the database.

Objectives of Database Security

Objective Description

Confidentiality Prevent unauthorized users from accessing sensitive data.

Integrity Protect data from unauthorized modifications or corruption.

Availability Ensure database services are available to authorized users when needed.

Authentication Verify the identity of users accessing the database.

Authorization Control what authenticated users can do within the database.

Objective Description

Auditing Track and record database activities for monitoring and compliance.

Threats to Database Security

Threat Description

Unauthorized Access Users gaining access without permission.

SQL Injection Malicious SQL code inserted via user input.

Privilege Abuse Authorized users exceeding their privileges.

Data Leakage Sensitive data being exposed or stolen.

Data Tampering Unauthorized modification of data.

Denial of Service (DoS) Attacks that disrupt database availability.

Database Security Measures

1. Authentication

 Methods: Passwords, biometrics, multi-factor authentication.

 Example: User logs in with username and password before accessing the DB.

2. Authorization

 Access Control mechanisms define what users can access or modify.

 Types:

o Discretionary Access Control (DAC): Users control access to their owned

objects.

o Mandatory Access Control (MAC): Access based on fixed policies (used in

high-security environments).

o Role-Based Access Control (RBAC): Permissions assigned to roles, and

users assigned roles.

Example:

sql

CopyEdit

GRANT SELECT, INSERT ON employees TO hr_role;

GRANT hr_role TO user_john;

3. Encryption

 Encrypt data at rest and in transit.

 Protects data from being readable if intercepted or stolen.

Example:

 Transparent Data Encryption (TDE) in Oracle encrypts data files.

 SSL/TLS encrypts data communication between client and database.

4. Auditing and Monitoring

 Logs user activities such as login attempts, queries run, changes made.

 Helps detect suspicious activities.

Example:

 Enable auditing in SQL Server to track who accessed or modified data.

5. Views and Stored Procedures

 Use views to restrict access to sensitive columns or rows.

 Use stored procedures to control data operations, avoiding direct table access.

6. Backup and Recovery

 Regular backups prevent data loss.

 Secure backups to avoid unauthorized access.

Example: Preventing SQL Injection

 Use parameterized queries or prepared statements.

sql

CopyEdit

-- Vulnerable:

EXEC('SELECT * FROM users WHERE username = ''' + @user_input + '''');

-- Safe:

PREPARE stmt FROM 'SELECT * FROM users WHERE username = ?';

EXECUTE stmt USING @user_input;

Example Scenario

A company uses RBAC:

 Roles: admin, sales, hr.

 Permissions: admin can read/write all data; sales can only read sales data; hr can

access employee data.

 Users assigned roles accordingly to restrict their access.

Summary Table

Security Aspect Description Example

Authentication Verify user identity Password, MFA

Authorization Define user permissions GRANT/REVOKE commands

Encryption Data confidentiality TDE, SSL/TLS

Auditing Track user actions Database audit logs

Views/Stored Procedures Control data access Creating restricted views

Backup and Recovery Protect against data loss Regular, secured backups

– Role-based access control –

What is RBAC?

Role-Based Access Control (RBAC) is a security mechanism in database management

systems where permissions are assigned to roles, and users are assigned to these roles. This

simplifies management of user privileges by grouping privileges under roles instead of

assigning privileges to individual users.

Why RBAC?

 Simplifies privilege management in large organizations.

 Ensures principle of least privilege — users get only the permissions needed for

their role.

 Makes it easier to audit and modify permissions.

 Supports separation of duties and compliance requirements.

Key Components of RBAC

Component Description

Users Individuals who need access to the database.

Roles Named collections of privileges.

Permissions Rights to perform operations (SELECT, INSERT, DELETE, etc.) on database objects.

Sessions Mapping between users and activated roles during a login session.

How RBAC Works

 Database administrators create roles based on job functions.

 Privileges are assigned to roles.

 Users are assigned one or more roles.

 When users connect, they acquire privileges of their assigned roles.

Advantages of RBAC

 Easier to assign/revoke permissions.

 Improves security by limiting privileges.

 Reduces errors from assigning excessive permissions.

 Supports organizational policies and compliance.

RBAC Example in SQL

Suppose an organization has these roles:

 admin_role: full access to all tables.

 hr_role: read/write access to employee-related tables.

 sales_role: read access to sales tables.

Step 1: Create Roles
sql

CopyEdit

CREATE ROLE admin_role;

CREATE ROLE hr_role;

CREATE ROLE sales_role;

Step 2: Grant Privileges to Roles
sql

CopyEdit

-- Admin role has all privileges on employees and sales tables

GRANT ALL PRIVILEGES ON employees TO admin_role;

GRANT ALL PRIVILEGES ON sales TO admin_role;

-- HR role can select and update employees table

GRANT SELECT, UPDATE ON employees TO hr_role;

-- Sales role can only select from sales table

GRANT SELECT ON sales TO sales_role;

Step 3: Assign Roles to Users
sql

CopyEdit

GRANT admin_role TO user_admin;

GRANT hr_role TO user_hr;

GRANT sales_role TO user_sales;

Step 4: Using Roles

 When user_hr logs in, they can query and update employees but cannot access sales.

 When user_sales logs in, they can only view sales data.

Example Scenario

A hospital database:

 doctor_role: Can view patient records and add diagnosis.

 nurse_role: Can view patient records only.

 billing_role: Can update billing information.

RBAC enforces access according to these roles rather than managing each user individually.

Summary Table

Aspect Description

Roles Group of privileges based on job function

Users Assigned one or more roles

Privileges Permissions to perform actions

Benefits Simplifies privilege management, enhances security

Threats and countermeasures

What are Threats in DBMS?

Threats are potential risks that can compromise the confidentiality, integrity, or availability of

data stored in a database. They can come from external attackers, insiders, or accidental

failures.

Common Threats to DBMS

Threat Description Example

Unauthorized

Access

Access by users without

permission.
A hacker gains access to sensitive records.

SQL Injection
Attacker inserts malicious SQL code

via input.

' OR '1'='1' injected into login forms to

bypass authentication.

Privilege Abuse
Legitimate users misuse their

privileges.

A database admin deletes critical data

intentionally or by mistake.

Data Tampering Unauthorized modification of data.
Modifying financial records to commit

fraud.

Data Theft /

Leakage
Sensitive data is stolen or leaked.

Exporting confidential customer data

without authorization.

Denial of Service

(DoS)

Overloading the database to make

it unavailable.
Flooding DB with queries to crash it.

Backup Failures
Failure to properly back up data

causing loss.
Backup media corruption or loss.

Malware / Viruses
Malicious software infects DBMS or

server.
Ransomware encrypting database files.

Software Bugs
Errors in DBMS software causing

crashes or data loss.

Crash during transaction commit leading to

data inconsistency.

Countermeasures for DBMS Threats

Threat Countermeasure Description & Example

Unauthorized

Access

Authentication &

Authorization

Use strong passwords, multi-factor authentication (MFA),

and role-based access control (RBAC). Example: Grant

limited access with GRANT statements.

Threat Countermeasure Description & Example

SQL Injection
Input Validation &

Parameterized Queries

Use prepared statements and validate all inputs. Example:

Use PreparedStatement in Java or bind variables in

PL/SQL.

Privilege Abuse
Principle of Least

Privilege & Auditing

Grant minimum necessary permissions; log all user

actions. Example: Assign roles with limited rights and

review audit logs regularly.

Data Tampering
Integrity Constraints &

Encryption

Use constraints like primary keys, foreign keys; encrypt

sensitive data. Example: Use checksums or hashes to

detect unauthorized changes.

Data Theft /

Leakage

Data Encryption &

Access Control

Encrypt data at rest and in transit; restrict access.

Example: Enable Transparent Data Encryption (TDE).

Denial of

Service (DoS)

Resource Limits &

Monitoring

Limit connections per user and monitor unusual traffic.

Example: Configure connection throttling.

Backup Failures
Regular Backups &

Verification

Schedule backups and test restore procedures. Example:

Use automated backup tools and verify backup integrity.

Malware /

Viruses

Antivirus & Patch

Management

Install antivirus software and keep DBMS updated.

Example: Regularly apply security patches from vendors.

Software Bugs Testing & Updates

Test DBMS updates in staging environments before

production. Example: Follow vendor’s update cycle and

best practices.

Example: Preventing SQL Injection

Vulnerable query:

sql

CopyEdit

String query = "SELECT * FROM users WHERE username = '" + userInput + "';";

If userInput is: ' OR '1'='1, the attacker gains access.

Safe query using parameterized statements:

sql

CopyEdit

PreparedStatement stmt = conn.prepareStatement("SELECT * FROM users WHERE

username = ?");

stmt.setString(1, userInput);

ResultSet rs = stmt.executeQuery();

Example: Role-Based Access Control (Countermeasure to Privilege Abuse)

sql

CopyEdit

CREATE ROLE read_only;

GRANT SELECT ON employees TO read_only;

GRANT read_only TO user_jane;

User user_jane can only read employee data, preventing unauthorized changes.

Summary Table

Threat Countermeasure Example

Unauthorized Access Strong authentication & RBAC Multi-factor authentication

SQL Injection Parameterized queries Prepared statements

Privilege Abuse Least privilege & auditing Role-based access control

Data Tampering Constraints & encryption Checksums, TDE

Data Theft Encryption & access control SSL/TLS, encrypted backups

DoS Resource limits & monitoring Connection throttling

Backup Failures Regular backup & restore tests Automated backup scheduling

Malware Antivirus & patches Regular patch updates

Software Bugs Testing & updates Staging environment testing

	1. What is a Database?
	Example:

	🔶 2. What is DBMS?
	Functions of DBMS:

	🔶 3. Features of DBMS
	🔶 4. Advantages of DBMS
	🔶 5. Disadvantages of DBMS
	🔶 6. Components of DBMS
	🔶 7. Types of Database Users
	🔶 8. Database Models
	🔶 9. DBMS vs RDBMS
	🔶 10. DBMS Languages
	🔶 11. Keys in DBMS
	🔶 12. ACID Properties (for Transactions)
	🔶 13. Example: Simple Student Table
	🔶 14. Popular DBMS Software
	✅ 1. What is a File System?
	🔹 Characteristics:

	✅ 2. What is a DBMS?
	🔹 Characteristics:

	✅ 3. Key Differences Between File System and DBMS
	✅ 4. Example: Student Records
	🔸 In File System:
	🔸 In DBMS:

	✅ 5. Limitations of File System
	✅ 6. Advantages of DBMS over File System
	✅ 7. When to Use What?
	✅ Conclusion
	✅ 1. Data Redundancy Control
	🔹 Explanation:
	🔹 Example:

	✅ 2. Data Consistency
	🔹 Explanation:
	🔹 Example:

	✅ 3. Data Integrity
	🔹 Explanation:
	🔹 Common Constraints:

	✅ 4. Data Security
	🔹 Explanation:
	🔹 Example:

	✅ 5. Concurrent Access
	🔹 Explanation:
	🔹 Example:

	✅ 6. Data Abstraction
	🔹 Explanation:
	🔹 Levels:

	✅ 7. Backup and Recovery
	🔹 Explanation:
	🔹 Example:

	✅ 8. Transaction Management (ACID Properties)
	🔹 Explanation:

	✅ 9. Reduced Application Development Time
	🔹 Explanation:
	🔹 Example:

	✅ 10. Data Sharing
	🔹 Explanation:
	🔹 Example:

	✅ 11. Scalability and Flexibility
	🔹 Explanation:

	✅ 12. Improved Decision-Making
	🔹 Explanation:
	🔹 Example:

	📝 Summary Table
	🎓 Conclusion
	✅ 1. What is Database Architecture?
	✅ 2. Types of Database Architecture
	✅ 3. 1-Tier Architecture
	🔹 Description:
	🔹 Example:
	🔹 Features:

	✅ 4. 2-Tier Architecture
	🔹 Description:
	🔹 Example:
	🔹 Features:

	✅ 5. 3-Tier Architecture
	🔹 Description:
	🔹 Features:
	🔹 Example:

	✅ 6. 3-Level Database Architecture (ANSI-SPARC Model)
	🔹 The 3 levels:
	🔸 a. External Level (View Level)
	Example:

	🔸 b. Conceptual Level (Logical Level)
	Example:

	🔸 c. Internal Level (Physical Level)
	Example:

	✅ 7. Data Independence
	✅ 8. Diagram: 3-Level Database Architecture
	✅ 9. Benefits of Layered Architecture
	📝 Summary Table: Types of Database Architecture
	🎓 Conclusion (1)
	✅ 1. What is a Data Model?
	🔹 It provides:

	✅ 2. Purpose of Data Models
	✅ 3. Types of Data Models
	✅ 4. Entity-Relationship (ER) Model
	🔹 Description:
	🔹 Components:
	🔹 Diagram Example:

	✅ 5. Relational Data Model
	🔹 Description:
	🔹 Example Table: Student
	🔹 Key Features:

	✅ 6. Hierarchical Data Model
	🔹 Description:
	🔹 Example:
	🔹 Features:

	✅ 7. Network Data Model
	🔹 Description:
	🔹 Example:
	🔹 Features:

	✅ 8. Object-Oriented Data Model
	🔹 Description:
	🔹 Features:

	✅ 9. Physical Data Model
	🔹 Description:
	🔹 Includes:

	✅ 10. Comparison Table: Common Data Models
	✅ 11. Advantages of Using Data Models
	🎓 Conclusion (2)
	✅ **1. What is a Database Schema?
	🔹 Key Points:
	🔹 Example of a Schema:
	🔹 Types of Schema:

	✅ 2. What is an Instance in DBMS?
	🔹 Key Points:
	🔹 Example:

	✅ 3. Analogy: Schema vs. Instance
	✅ 4. Schema vs. Instance – Key Differences
	✅ 5. Practical Scenario
	🧱 Schema:
	📊 Instance:

	✅ 6. Why Are Schema and Instance Important?
	✅ 7. Visual Representation
	🎓 Conclusion (3)
	✅ 1. What is Data Independence?
	✅ 2. Levels of Database Architecture
	✅ 3. Types of Data Independence
	🔹 A. Logical Data Independence
	🧠 Example:
	✅ Benefits:

	🔹 B. Physical Data Independence
	🧠 Example:
	✅ Benefits:

	✅ 4. Importance of Data Independence
	✅ 5. Diagram: Data Independence and Schema Levels
	✅ 6. Example Scenario
	Logical Change:
	Physical Change:

	✅ 7. Challenges in Achieving Data Independence
	✅ 8. Real-Life Analogy
	🎓 Conclusion (4)
	✅ 1. What are Database Languages?
	✅ 2. Types of Database Languages
	✅ 3. Data Definition Language (DDL)
	🔹 Purpose:
	🔹 Common Commands:

	✅ 4. Data Manipulation Language (DML)
	🔹 Purpose:
	🔹 Common Commands:

	✅ 5. Data Control Language (DCL)
	🔹 Purpose:
	🔹 Common Commands:

	✅ 6. Transaction Control Language (TCL)
	🔹 Purpose:
	🔹 Common Commands:

	✅ 7. Query Language
	🔹 Purpose:
	🔹 Example:

	✅ 8. Summary Table of Database Languages
	✅ 9. Importance of Database Languages
	🎓 Conclusion (5)
	✅ 1. Introduction
	✅ 2. Types of Database Users
	🔹 A. Types of Users

	✅ 3. Roles of Database Users
	✅ 4. Database Administrator (DBA)
	🔹 Responsibilities:

	✅ 5. Other Roles Related to DBMS
	✅ 6. Summary Table
	✅ 7. Why is Role Differentiation Important?
	🎓 Conclusion (6)
	✅ 1. What is a Data Dictionary?
	✅ 2. Purpose of Data Dictionary
	✅ 3. Contents of Data Dictionary
	✅ 4. Types of Data Dictionaries
	🔹 A. Active Data Dictionary
	🔹 B. Passive Data Dictionary

	✅ 5. Functions of Data Dictionary
	✅ 6. Example of Data Dictionary Entries
	✅ 7. Importance of Data Dictionary
	✅ 8. Summary Table
	🎓 Conclusion (7)
	ER Model in Database Design Process
	Why Use ER Diagrams In DBMS?
	Symbols Used in ER Model
	What is an Entity?
	What is an Entity Set?
	Types of Entity
	1. Strong Entity
	2. Weak Entity

	Attributes in ER Model
	Types of Attributes
	1. Key Attribute
	2. Composite Attribute
	3. Multivalued Attribute
	4. Derived Attribute

	Relationship Type and Relationship Set
	Degree of a Relationship Set
	Cardinality in ER Model
	1. One-to-One
	2. One-to-Many
	4. Many-to-One
	4. Many-to-Many

	Participation Constraint
	📘 Relational Model in DBMS
	🔷 Definition
	🔷 Key Terminologies
	🔷 Structure of a Relation
	🔷 Features of Relational Model
	🔷 Relational Integrity Constraints
	🔷 Advantages of Relational Model
	🔷 Disadvantages
	🔷 Relational Algebra and SQL
	🔷 Normalization in Relational Model
	🔷 Real-life Applications
	🔷 Example Queries (SQL)

	Relational Algebra in DBMS
	🔷 Definition
	🔷 Types of Relational Algebra Operations

	🔹 1. Basic Set Operations
	🔹 2. Relational Operations (Core operations)
	🔷 Detailed Explanation of Each Operation
	1. Select (σ)
	2. Project (π)
	3. Union (∪)
	4. Set Difference (−)
	5. Cartesian Product (×)
	6. Rename (ρ)
	7. Join (⨝)
	Types of Join:

	8. Division (÷)

	🔷 Relational Algebra Query Example
	Q: Find names of students enrolled in ‘CS’ course.

	🔷 Relational Algebra vs SQL
	🔷 Importance of Relational Algebra
	Relational Calculus in DBMS
	🔷 Definition

	Key Characteristics
	1. Tuple Relational Calculus (TRC)
	✅ Syntax
	✅ Example
	Q: Retrieve names of students older than 18.

	✅ TRC Operators and Notations

	🔷 2. Domain Relational Calculus (DRC)
	✅ Syntax
	✅ Example
	Q: Get names of students older than 18.

	✅ DRC vs TRC

	🔷 Safe Expressions in Relational Calculus
	❗ Unsafe Query Example:

	🔷 Use of Quantifiers
	✅ Example (with quantifier):

	🔷 Relational Algebra vs. Relational Calculus
	🔷 Advantages of Relational Calculus
	🔷 Limitations
	📝 Summary
	🔑 PART 1: KEYS IN DBMS
	🔷 What is a Key?
	✅ Types of Keys with Examples
	1. Super Key
	2. Candidate Key
	3. Primary Key
	4. Alternate Key
	5. Composite Key
	6. Foreign Key
	7. Unique Key

	🧩 Key Comparison Table

	🛡️ PART 2: CONSTRAINTS IN DBMS
	🔷 What is a Constraint?
	✅ Types of Constraints with Examples
	1. NOT NULL Constraint
	2. UNIQUE Constraint
	3. PRIMARY KEY Constraint
	4. FOREIGN KEY Constraint
	5. CHECK Constraint
	6. DEFAULT Constraint

	📋 Full Table Example with Constraints
	✅ Constraints Summary Table

	🧠 Why Are Keys and Constraints Important?
	🔷 What is Normalization?
	🧱 Types (Forms) of Normalization
	✅ 1NF – First Normal Form
	🔸 Rule:
	🔸 Violation Example:
	🔸 Conversion to 1NF:

	✅ 2NF – Second Normal Form
	🔸 Rule:
	🔸 Violation Example:
	🔸 Conversion to 2NF:

	✅ 3NF – Third Normal Form
	🔸 Rule:
	🔸 Violation Example:
	🔸 Conversion to 3NF:

	✅ BCNF – Boyce-Codd Normal Form
	🔸 Rule:
	🔸 Violation Example:
	🔸 Conversion to BCNF:

	✅ 4NF – Fourth Normal Form
	🔸 Rule:
	🔸 Violation Example:
	🔸 Conversion to 4NF:

	✅ 5NF – Fifth Normal Form / PJ/NF (Project-Join Normal Form)
	🔸 Rule:
	🔸 Violation Example:
	🔸 Conversion to 5NF:

	🧠 Summary Table
	💡 Why Normalize?
	🔚 Conclusion
	🔷 What is a Functional Dependency?
	✅ Formal Definition
	🎯 Example of Functional Dependency
	🧩 Types of Functional Dependencies
	1. Trivial Functional Dependency
	2. Non-Trivial Functional Dependency
	3. Completely Non-Trivial Dependency
	4. Partial Dependency
	5. Transitive Dependency
	6. Multivalued Dependency (MVD)

	🛠️ How to Identify Functional Dependencies
	📋 Notation and Symbols
	📚 Example Table and Functional Dependencies
	🧠 Attribute Closure (X⁺)
	Example:

	⚙️ Uses of Functional Dependencies
	📌 Armstrong’s Axioms (Inference Rules)
	Additional Rules (Derived):

	✅ Example: Checking Normal Forms Using FDs
	Table:
	Analysis:

	🔚 Summary
	🔷 What is a Multivalued Dependency?
	🔸 Formal Definition:

	✅ Notation:
	🔍 Example:
	Table: Student(StudentID, Hobby, Language)

	💡 Key Points:
	🧱 Properties of Multivalued Dependencies
	🚫 Anomalies Caused by MVDs
	1. Insertion Anomaly
	2. Deletion Anomaly
	3. Update Anomaly

	✅ Eliminating MVDs – Use Fourth Normal Form (4NF)
	🔸 Rule for 4NF:
	🔧 Conversion to 4NF – Decomposition Example:
	❌ Not in 4NF:
	✅ 4NF Decomposition:

	📋 Another Example:
	Table: Book(Title, Author, Genre)
	Decompose to 4NF:

	🧠 Summary Table (1)
	🔚 Conclusion (1)
	🔷 What is Decomposition?
	✅ Properties of a Good Decomposition
	🔸 Why Decompose?
	🔍 Types of Decomposition
	1. Lossless Join Decomposition
	2. Lossy Join Decomposition

	✅ Lossless Join – Formal Definition
	🔐 Lossless Join Condition (Using Functional Dependencies)
	📚 Example – Lossless Join
	Given relation:
	Functional Dependencies:
	Decomposition:
	Common attribute: DeptID

	❌ Example – Lossy Join
	Given:
	Decompose into:
	Common attributes: None

	🧠 Dependency Preservation
	🎯 Summary Table
	🛠️ Real-World Example
	Table: Orders(OrderID, CustomerID, CustomerName, ProductID, ProductName)
	Functional Dependencies:
	Decompose into:

	🔚 Conclusion (2)
	🔷 What is SQL?
	🔶 1. Data Definition Language (DDL)
	🔸 Purpose:
	🧾 Common DDL Commands:
	✅ Examples:

	🔷 2. Data Manipulation Language (DML)
	🔸 Purpose:
	🧾 Common DML Commands:
	✅ Examples:

	🔷 3. Data Control Language (DCL)
	🔸 Purpose:
	🧾 Common DCL Commands:
	✅ Examples:

	🔷 4. Transaction Control Language (TCL)
	🔸 Purpose:
	🧾 Common TCL Commands:
	✅ Examples:

	📚 Summary Table
	🧠 Key Points:
	🧪 Practice Tip
	🔚 Conclusion (3)
	1️⃣ Table Creation
	What is it?
	Syntax (Basic):
	Common Data Types:
	Common Constraints:
	Example:

	2️⃣ Table Modification
	What is it?
	Using the ALTER TABLE command.
	Common Modifications:
	Examples:

	3️⃣ Table Deletion
	What is it?
	Syntax:
	Example:

	4️⃣ Additional: Truncating a Table
	What is it?
	Syntax:
	Example:

	⚠️ Summary Table of Commands
	🧠 Key Points: (1)
	1️⃣ Indexes in DBMS
	🔷 What is an Index?
	🔷 Purpose of Indexes
	🔷 Types of Indexes
	🔷 Creating an Index
	🔷 Creating a Unique Index
	🔷 Examples
	🔷 Dropping an Index
	🔷 Important Notes:

	2️⃣ Views in DBMS
	🔷 What is a View?
	🔷 Purpose of Views
	🔷 Creating a View
	🔷 Examples
	🔷 Querying a View
	🔷 Updating a View
	🔷 Dropping a View

	⚠️ Summary Table
	🧠 Key Points
	Nested Query
	1️⃣ What is a Nested Query?
	2️⃣ Purpose of Nested Queries
	3️⃣ Types of Subqueries
	4️⃣ Syntax Examples
	Basic Subquery in WHERE clause:

	5️⃣ Detailed Examples
	Example 1: Single-row Subquery
	Example 2: Multiple-row Subquery with IN
	Example 3: Multiple-column Subquery
	Example 4: Correlated Subquery
	Example 5: Subquery in FROM clause (Derived Table)

	6️⃣ Key Points About Nested Queries
	7️⃣ Advantages of Nested Queries
	8️⃣ Disadvantages
	Summary Table
	1️⃣ What is a Join?
	2️⃣ Why Use Joins?
	3️⃣ Types of Joins
	4️⃣ Join Syntax and Examples
	4.1 INNER JOIN
	4.2 LEFT JOIN (LEFT OUTER JOIN)
	4.3 RIGHT JOIN (RIGHT OUTER JOIN)
	4.4 FULL JOIN (FULL OUTER JOIN)
	4.5 CROSS JOIN
	4.6 SELF JOIN
	4.7 NATURAL JOIN

	5️⃣ Visual Example of INNER JOIN
	6️⃣ Important Notes
	7️⃣ Summary Table of Joins
	1️⃣ What are Aggregate Functions?
	2️⃣ Common Aggregate Functions
	3️⃣ Syntax of Aggregate Functions
	4️⃣ Examples of Aggregate Functions
	Example 1: COUNT()
	Example 2: SUM()
	Example 3: AVG()
	Example 4: MIN() and MAX()

	5️⃣ Using Aggregate Functions with GROUP BY
	Example: Total salary per department
	Example: Count employees per department

	6️⃣ Using Aggregate Functions with HAVING Clause
	Example: Departments with more than 5 employees

	7️⃣ Important Notes
	8️⃣ Summary Table of Aggregate Functions
	🔷 What is Grouping?
	🔷 Syntax of GROUP BY
	🔷 How it works
	🔷 Example: Grouping by single column
	🔷 Example: Grouping by multiple columns
	🔷 Important Points on Grouping
	🔷 Filtering Groups: HAVING

	2️⃣ Ordering in DBMS (ORDER BY)
	🔷 What is Ordering?
	🔷 Syntax of ORDER BY
	🔷 Examples of Ordering
	Example 1: Order employees by salary (ascending)
	Example 2: Order employees by department descending and salary ascending

	3️⃣ Combining Grouping and Ordering
	4️⃣ Summary Table
	5️⃣ Important Notes
	📌 What is a PL/SQL Procedure?
	🔧 Syntax of a PL/SQL Procedure
	Parameter Modes:

	✅ Example 1: Simple Procedure (No Parameters)
	✅ Example 2: Procedure with IN Parameter
	✅ Example 3: Procedure with OUT Parameter
	✅ Example 4: Procedure to Insert into Table
	🔄 Modifying a Procedure
	❗ Dropping a Procedure
	🔍 Viewing Procedures in the Database
	📌 Advantages of Using Procedures
	📌 What is a PL/SQL Function?
	🔧 Syntax of a PL/SQL Function
	Note:

	✅ Example 1: Simple Function (Returns Square of a Number)
	✅ Example 2: Function to Calculate Factorial
	✅ Example 3: Function in SQL Statement
	🧾 Differences Between Function and Procedure
	🧠 Benefits of Functions in DBMS
	❗ Dropping a Function
	📍 Viewing All Functions
	📌 What is a Trigger in DBMS?
	🔄 Common Triggering Events:
	🧠 Use Case:

	🔧 Syntax of a Trigger
	Key Clauses:

	✅ Example 1: BEFORE INSERT Trigger (Audit Logging)
	✅ Example 2: AFTER DELETE Trigger
	✅ Example 3: BEFORE UPDATE Trigger (Enforce Business Rule)
	✅ Example 4: Trigger on Multiple Events
	📜 OLD and NEW Pseudorecords
	🧾 Types of Triggers
	❗ Dropping a Trigger
	🔍 Viewing Existing Triggers
	⚠️ Notes on Triggers
	Cursor
	📌 What is a Cursor in DBMS?
	🔄 Types of Cursors in PL/SQL
	✅ Implicit Cursor Example
	✅ Explicit Cursor – Syntax
	✅ Example: Explicit Cursor
	✅ Cursor FOR Loop – Simplified Syntax
	✅ Parameterized Cursor Example
	🔍 Cursor Attributes
	🧠 Why Use Cursors?
	⚠️ Cursor Performance Tips
	🗑️ Closing a Cursor
	📌 What is a Transaction in DBMS?
	🔄 ACID Properties of Transactions
	1. ✅ Atomicity (All or Nothing)
	2. ✅ Consistency (Preserve Database Rules)
	3. ✅ Isolation (No Interference)
	4. ✅ Durability (Permanent Changes)

	✅ Example of Complete Transaction
	💡 Summary Table
	📌 What is Concurrency Control in DBMS?
	🧠 Why is it needed?

	🔄 Problems in Concurrency (Anomalies)
	1. 🧨 Lost Update Problem
	2. 🧨 Dirty Read (Uncommitted Dependency)
	3. 🧨 Non-repeatable Read
	4. 🧨 Phantom Read

	✅ Concurrency Control Techniques
	1. 🔐 Lock-Based Protocols
	🔄 Two-Phase Locking (2PL)

	2. 🧪 Timestamp Ordering Protocol
	3. 🔃 Optimistic Concurrency Control
	4. 🧱 Multiversion Concurrency Control (MVCC)
	5. ⏳ Serialization Graph Checking

	🧪 Example: Lock-Based Concurrency Control
	🛡️ Isolation Levels (SQL Standard)
	⚠️ Deadlocks in Concurrency
	Example:

	✅ Best Practices
	🧠 Summary
	📌 What is Locking in DBMS?
	🔐 Why Use Locks?
	🔑 Types of Locks in DBMS
	🔁 Lock Granularity
	✅ Example 1: Shared vs Exclusive Lock
	Shared Lock
	Exclusive Lock

	🔄 Lock-Based Protocols
	1. Two-Phase Locking (2PL)
	🔒 Strict 2PL

	🔃 Example: Two Transactions
	🧱 Lock Compatibility Matrix
	🔃 Intention Locking (Advanced)
	🛠 Deadlocks and Locks
	Example:

	✅ Locking in SQL (Example – Oracle or MySQL)
	💡 Best Practices for Locking
	🧠 Summary Table (2)
	🔁 What is a Deadlock in DBMS?
	🧠 Real-world analogy:

	⚠️ Deadlock Condition (Coffman’s Conditions)
	🧨 Example of a Deadlock
	SQL Example:

	🛡️ Deadlock Handling Techniques
	1. ✅ Deadlock Prevention
	Techniques:

	2. 🔄 Deadlock Avoidance
	Algorithm: Wait-For Graph
	Example:

	3. 🕵️♂️ Deadlock Detection and Recovery
	Detection:
	Recovery:

	🔃 Example of Wait-For Graph
	🧪 Deadlock Detection in SQL (MySQL Example)
	⚙️ Deadlock Resolution Strategy (DBMS Behavior)
	📋 Summary Table
	✅ Best Practices to Minimize Deadlocks
	📂 What is File Organization in DBMS?
	🧠 Why File Organization is Important?
	📋 Types of File Organization
	1️⃣ Heap File Organization (Unordered)
	✅ Advantages:
	❌ Disadvantages:
	📌 Example:

	2️⃣ Sequential File Organization
	✅ Advantages:
	❌ Disadvantages:
	📌 Example:

	3️⃣ Hash File Organization
	✅ Advantages:
	❌ Disadvantages:
	📌 Example:

	4️⃣ Clustered File Organization
	✅ Advantages:
	❌ Disadvantages:
	📌 Example:

	5️⃣ Indexed Sequential File Organization
	✅ Advantages:
	❌ Disadvantages:
	📌 Example:

	🧮 Comparison Table
	✅ Best File Type Per Use Case
	🔚 Conclusion (4)
	📚 What is Indexing in DBMS?
	🧠 Why Indexing?
	🔑 How Indexing Works
	Analogy:

	🧱 Types of Indexing
	1️⃣ Primary Index
	📌 Example:

	2️⃣ Secondary Index
	📌 Example:

	3️⃣ Clustered Index
	📌 Example:

	4️⃣ Non-Clustered Index
	📌 Example:

	5️⃣ Unique Index
	📌 Example:

	6️⃣ Composite Index
	📌 Example:

	7️⃣ B-Tree Index (Balanced Tree)
	8️⃣ Bitmap Index
	📌 Example:

	🆚 Clustered vs Non-Clustered Index
	✅ Advantages of Indexing
	❌ Disadvantages of Indexing
	🧪 Practical Example
	Table:
	Create an index on price:
	Now a query:

	🧠 When to Use Indexing?
	🧾 Summary Table
	🔐 Hashing Techniques in DBMS
	What is Hashing?

	Why Use Hashing?
	How Hashing Works?
	Characteristics of Hashing
	Types of Hashing Techniques
	1. Static Hashing
	2. Dynamic Hashing

	1️⃣ Static Hashing Details
	Example:

	2️⃣ Dynamic Hashing Techniques
	a. Extendible Hashing
	Example:

	b. Linear Hashing

	Collision Handling Techniques
	1. Chaining (Separate Chaining)
	2. Open Addressing

	Example of Chaining
	Advantages of Hashing
	Disadvantages of Hashing
	Summary Table (1)
	Sample SQL Example (conceptual)
	🌳 B+ Trees in DBMS
	What is a B+ Tree?
	Why B+ Tree?
	Structure of B+ Tree
	Key Properties
	Visual Representation (Example: B+ Tree of order 4)

	Operations on B+ Tree
	1. Search
	2. Insertion
	3. Deletion

	Advantages of B+ Tree
	Comparison with B-Tree
	Example Scenario
	Summary Table (2)
	Pseudocode: Search in B+ Tree
	🔍 Query Processing in DBMS
	Why Query Processing?
	Main Goals of Query Processing
	Stages of Query Processing
	1. Parsing and Translation
	Example:
	2. Query Optimization
	3. Query Evaluation (Execution)

	Important Concepts in Query Processing
	a) Query Tree
	b) Query Optimization Techniques

	Query Execution Example
	Execution Steps:

	Query Processing Example: Using Index
	Query Execution Plans
	Summary Table (3)
	Key Takeaways
	🚀 Query Optimization in DBMS
	Why Query Optimization?

	Key Components of Query Optimization
	1. Query Execution Plan (QEP)
	2. Cost Estimation

	Types of Query Optimization
	a) Heuristic Optimization
	b) Cost-Based Optimization

	Query Optimization Steps
	Important Concepts
	a) Selection Pushdown
	b) Join Ordering

	Example Query
	Possible Join Orders:
	Using Selection Pushdown

	Join Algorithms and Cost Impact
	Cost Estimation Factors
	Summary Table (4)
	Example: Heuristic Optimization
	📊 Cost Estimation in DBMS
	What is Cost Estimation?
	Why Cost Estimation?

	Components of Cost
	Cost Model Basics
	Important Statistics for Cost Estimation
	Example: Cost Estimation for Selection
	Cost Estimate:

	Cost Estimation for Joins
	Nested Loop Join
	Sort-Merge Join
	Hash Join

	Summary Table of Cost Components
	Practical Example
	Conclusion
	📋 Query Execution Plan (QEP) in DBMS
	What is a Query Execution Plan?
	Why is Query Execution Plan Important?
	Components of a Query Execution Plan
	How is QEP Represented?

	Example 1: Simple Query Execution Plan
	Example 2: Join Query Execution Plan
	Common Operations in QEP
	Join Algorithms in QEP
	Tools to View QEP
	Sample Output of EXPLAIN (MySQL)
	Summary Table (5)
	⚡ Performance Tuning in DBMS
	Why Performance Tuning is Important?

	Key Areas of Performance Tuning
	1. Query Tuning
	2. Index Tuning
	3. Database Design Tuning
	4. Memory and Cache Tuning
	5. Configuration and Resource Tuning
	6. Locking and Concurrency Control

	Performance Tuning Tools in DBMS
	Example: Query Performance Tuning
	Example: Index Usage
	Summary Table (6)
	What is a Distributed Database?
	Key Characteristics
	Types of Distributed Databases
	Data Distribution Strategies
	Types of Fragmentation
	Advantages of Distributed Databases
	Challenges in Distributed Databases
	Example Scenario
	Example: Horizontal Fragmentation
	Distributed Query Processing
	Distributed Transaction Management
	Summary Table
	What is NoSQL?
	Why NoSQL?
	Types of NoSQL Databases
	Characteristics of NoSQL
	Example: Document Store (MongoDB)
	Example: Key-Value Store (Redis)
	Advantages of NoSQL
	Disadvantages of NoSQL
	Use Cases for NoSQL
	Summary Table (1)
	What is Data Warehousing?
	Key Features of Data Warehouse
	Architecture of Data Warehouse
	Types of Data Warehouse
	Data Modeling in Data Warehouse
	OLAP vs OLTP
	Example Scenario (1)
	Benefits of Data Warehousing
	Example: Simple Star Schema Query
	Summary Table (2)
	What is OLTP?
	What is OLAP?
	Key Differences Between OLTP and OLAP
	OLTP System Example
	OLAP System Example
	OLTP vs OLAP: Data Modeling
	Summary Table (3)
	1. Big Data in DBMS
	What is Big Data?
	Characteristics of Big Data (The 5 Vs)
	Challenges of Big Data
	Big Data Technologies
	Example Scenario

	2. Cloud Databases in DBMS
	What is a Cloud Database?
	Types of Cloud Databases
	Advantages of Cloud Databases
	Challenges of Cloud Databases

	Big Data and Cloud Database Integration
	Example: Using Amazon Web Services (AWS)
	Summary Table (4)
	What is Database Security?
	Objectives of Database Security
	Threats to Database Security
	Database Security Measures
	1. Authentication
	2. Authorization
	3. Encryption
	4. Auditing and Monitoring
	5. Views and Stored Procedures
	6. Backup and Recovery

	Example: Preventing SQL Injection
	Example Scenario (2)
	Summary Table (5)
	What is RBAC?
	Why RBAC?
	Key Components of RBAC
	How RBAC Works
	Advantages of RBAC
	RBAC Example in SQL
	Step 1: Create Roles
	Step 2: Grant Privileges to Roles
	Step 3: Assign Roles to Users
	Step 4: Using Roles

	Example Scenario (3)
	Summary Table (6)
	What are Threats in DBMS?
	Common Threats to DBMS
	Countermeasures for DBMS Threats
	Example: Preventing SQL Injection (1)
	Example: Role-Based Access Control (Countermeasure to Privilege Abuse)
	Summary Table (7)

