
Ex. No.: 11 Write a program for KNN Algorithm

AIM:

To write a Python program to calculate the KNN Algorithm by using
the given series of files.

K-nearest neighbors (KNN) is a simple, supervised machine learning (ML)
algorithm that can be used for classification or regression tasks - and is also
frequently used in missing value imputation. It is based on the idea that the
observations closest to a given data point are the most "similar" observations
in a data set, and we can therefore classify unforeseen points based on the
values of the closest existing points. By choosing K, the user can select the
number of nearby observations to use in the algorithm.

Here, we will show you how to implement the KNN algorithm for
classification, and show how different values of K affect the results.

K is the number of nearest neighbors to use. For classification, a majority
vote is used to determined which class a new observation should fall into.
Larger values of K are often more robust to outliers and produce more stable
decision boundaries than very small values (K=3 would be better than K=1,
which might produce undesirable results.

Program:

import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
x = [4, 5, 10, 4, 3, 11, 14, 8, 10, 12]
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]
classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
data = list(zip(x, y))
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(data, classes)
new_x = 8
new_y = 21
new_point = [(new_x, new_y)]
prediction = knn.predict(new_point)
plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]])
plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class: {prediction[0]}")
plt.show()
Output:

(ii) Program:

import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12]
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]
classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
data = list(zip(x, y))
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(data, classes)
new_x = 8
new_y = 21
new_point = [(new_x, new_y)]
prediction = knn.predict(new_point)
plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]])
plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class: {prediction[0]}")
plt.show()
Output:

