#### Ex. No.: 5 Write a Program for Simple Linear Regression

## AIM:

To write a Python program to calculate the simple linear regression by using the given series and csv files.

### (i) Program (By using the given series):

```
import matplotlib.pyplot as plt
from scipy import stats
x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
slope, intercept, r, p, std_err = stats.linregress(x, y)
defmyfunc(x):
return slope * x + intercept
mymodel = list(map(myfunc, x))
plt.plot(x, mymodel)
plt.scatter(x, y)
plt.show()
```

# **Output:**



# (ii) Program (By using the csv file):

import pandas as pd
import statsmodels.formula.api as smf
df=pd.read\_csv("Book.csv", header=0, sep=",")
model=smf.ols('Duration ~ calories', data=df)

results = model.fit()
print(results.summary())

## Output:

|                             |         | OLS               | R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: |                           |        | 0.190<br>0.100<br>2.113 |  |
|-----------------------------|---------|-------------------|----------------------------------------------------------------------------------|---------------------------|--------|-------------------------|--|
|                             |         | e, 05 Aug 2025    |                                                                                  |                           | ):     |                         |  |
|                             |         |                   |                                                                                  |                           |        |                         |  |
| Df Residuals:               | J113 .  |                   | BIC:                                                                             |                           |        | 75.15                   |  |
| Df Model:<br>Covariance Typ |         |                   |                                                                                  |                           |        |                         |  |
|                             | pe:     | : nonrobust       |                                                                                  |                           |        |                         |  |
|                             |         | std err           |                                                                                  | P> t                      | •      |                         |  |
| Intercept                   | 71.4004 | 13.318<br>0.025 - | 5.361                                                                            | 0.000                     | 41.273 | 101.528                 |  |
| Omnibus:<br>Prob(Omnibus)   | :       | 0.458<br>0.795    |                                                                                  | n-Watson:<br>e-Bera (JB): |        | 1.513                   |  |
| Skew:<br>Kurtosis:          |         |                   | Prob(Cond.                                                                       | •                         |        | 0.816<br>3.43e+03       |  |

The linear regression function can be rewritten mathematically as:

Duration =-0.0367 \* calories + 71.4004 [Y=aX+b]. Here P-value is 0.180. Which is greater than 0.05 and also R-Squared value is 0.190. Hence we conclude that there is a no significant relationship between the Duration and calories. Hence the regression line does not fit for the data.

**Regression:**The term regression is used to find the relationship between variables. In Machine Learning and in statistical modeling, that relationship is used to predict the outcome of events.

**Least Square Method:**Linear regression uses the least square method. The concept is to draw a line through all the plotted data points. The line is positioned in a way that it minimizes the distance to all of the data points. The distance is called residuals or errors.

**Regression Table:** The output from linear regression can be summarized in a regression table. The content of the table includes:

- 1. Information about the model.
- 2. Coefficients of the linear regression function.
- 3. Regression statistics.
- 4. Statistics of the coefficients from the linear regression function.

5. Other information that we will not cover in this module.

[smf.ols: statsmodels formula and Ordinary Least Squares]

Dep. Variable = Dependent Variable

Model = ols

Date and Time: shows the date and time the output was calculated.

Coef = Coefficient. It is the output of the linear regression function.

std err = Standard error

t = t is the t-value of the coefficients.

[0.025 0.975] represents the confidence interval of the coefficients.

**P-value:**P>t is called the P-value. The P-value is a statistical measure that helps determine the significance of results. If P-value <= 0.05, it indicates that there is a significant relationship between the two variables. If P-value > 0.05, it indicates that there is no significant relationship between the two variables.

**R-Squared and Adjusted R-Squared**: R-Squared and Adjusted R-Squared describes how well the linear regression model fits the data points. The value of R-Squared is always between 0 to 1 (0% to 100%). A **high R-Squared value** means that many data points are close to the linear regression function line. A **low R-Squared value** means that the regression function line does not fit the data well.

What is Duration if a calorie is: 56, 45, 65.

# Program:

def Duration(calories):

return (-0.0367 \* calories + 71.4004)

print(Duration(56))

print(Duration(45))

print(Duration(65))

#### **Output:**

69.3452

69.7489

69.01490000000001

#### (iii) Program (By using the csv file):

```
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import statsmodels.formula.api as smf
df=pd.read_csv("Book.csv", header=0, sep=",")
x=df["Duration"]
y=df["calories"]
slope, intercept, r, p, std_err = stats.linregress(x, y)
def myfunc(x):
```

```
return slope * x + intercept
mymodel = list(map(myfunc, x))
print(mymodel)
model=smf.ols('Duration ~ calories', data=df)
results = model.fit()
print(results.summary())
plt.plot(x, mymodel)
plt.scatter(x, y)
plt.ylim(ymin=0,ymax=700)
plt.xlim(xmin=0,xmax=80)
plt.xlabel("Duration")
plt.ylabel("calories")
plt.show()
```

## **Output:**

[481.3214412495563, 533.1407525736599, 559.0504082357118, 512.4130280440185, 507.2310969116081, 491.68530351437704, 455.4117855875045, 559.0504082357118, 574.5962016329429, 548.6865459708911, 512.4130280440185]

```
Warning (from warnings module):
   File "C:\Users\admin\AppData\Roaming\Python\Python38\site-packages\scipy\stats\_stats_py.py", line 1736
warnings.warn("kurtosistest only valid for n>=20 ... continuing "
UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=11
                                 OLS Regression Results
Dep. Variable:
                                                R-squared:
                                                                                        0.190
Model:
                                                Adj. R-squared:
               Least Squares
Tue, 05 Aug 2025
Method:
                                                F-statistic:
                                                                                        2.113
                                                Prob (F-statistic):
Date:
Time:
                                 21:23:01
                                                Log-Likelihood:
No. Observations:
Df Residuals:
Df Model:
Covariance Type:
                                 nonrobust
                  coef std err
                                                         P>|t|
                                                                       [0.025
             71.4004
-0.0367
                                        -1.454
calories
                                                           0.180
                                                                                        1.513
Omnibus:
                                      0.458
                                                Durbin-Watson:
Prob(Omnibus):
                                                Prob(JB):
Skew:
                                     -0.368
                                                                                        0.816
Kurtosis:
```

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.43e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Activate Wind
Go to Settings to a

