
11.1 INTRODUCTION

• A pointer is a derived data type in c.

• Pointers contains memory addresses as

their values.

• A pointer is a variable whose value is the

address of another variable, i.e., direct

address of the memory location.

• Like any variable or constant, you must

declare a pointer before using it to store

any variable address.

• Pointers can be used to access and

manipulate data stored in the memory.

Advantages

(i) Pointers make the programs simple and

reduce their length.

(ii) Pointers are helpful in allocation and de-

allocation of memory during the execution

of the program.

 Thus, pointers are the instruments

dynamic memory management.

(iii) Pointers enhance the execution speed of a

program.

(iv) Pointers are helpful in traversing through

arrays and character strings. The strings

are also arrays of characters terminated by

the null character (‘\0’).
(v) Pointers also act as references to different

types of objects such as variables, arrays,

functions, structures, etc. In C, we use

pointer as a reference.

(vi) Storage of strings through pointers saves

memory space.

(vii) Pointers may be used to pass on arrays,

strings, functions, and variables as

arguments of a function.

(viii) Passing on arrays by pointers saves lot of

memory because we are passing on only

the address of array instead of all the

elements of an array, which would mean

passing on copies of all the elements and

thus taking lot of memory space.

(ix) Pointers are used to construct different

data structures such as linked lists, queues,

stacks, etc.

https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/input-output-and-memory/memory

11.2 ACCESSING THE ADDRESS VARIABLE

• The operator & immediately preceding a

variable returns the address of the variable

associated with it.

Example

p=&quantity;

• Would assign 5000 (the location of

quantity) to the variable p.

• The & operator is a address operator.

• The & operator can be used only with a

simple variable or an array element.

&125  pointing at constants

int x[10]; illegal

&x  pointing at array names

&(x+y)  pointing at expressions

• If x is an array then expression such as

&x[0] is valid.

#include <stdio.h>

#include <conio.h>

void main()

{

int x=125;

float p=20.345;

char a=‘a’;
clrscr();

printf(“%d is stored at addr %u\n”,x,&x);

printf(“%f is stored at addr %u\n”,p,&p);

printf(“%c is stored at addr %u\n”,a,&a);

getch();

}

DECLARING POINTER VARIABLES

Syntax

data_type *pt_name;

1. The * tells that the variable pt_name is a
name of the pointer variable.

2. Pt_name needs a memory location.

3. Pt_name points to a variable of type
data_type.

Example

int *p;

• Declares the variable p as a pointer
variable that points to an integer data type.

• The declarations cause the compiler to
alocate memory locations for the pointer
variable p.

INITIALIZATION OF POINTER
VARIABLES

• The process of assigning the address of a
variable to a pointer variable is known as
initialization.

• All uninitialized pointers will have some
unknown values that will be interpreted as
memory addresses.

• They may not be valid addresses or they
may point to some values that are wrong.

• Once a pointer variable has been declared
we can use the assignment operator to
initialize the variable.

Example

1. int q; 2. int q; 3. int x,*p=&x

 int *p; int *p=&q

 p=&q;

Illegal statement  int *p=&x, x;

• We can also define a pointer variable with
an initial value to NULL or 0.

int *p=null:

int *p=0;

11.3 POINTER FLEXIBILITY

 • Pointers are flexible.

• We can make the same pointer to point to different data variables in different statements.

Example
int x, y, z, *p

……………

*p=&x;

……………

*p=&y;

……………

*p=&z;

……………

• We can also use different pointers to point to the same data variable.

Example

int x;

int *p1=&x;

int *p2=&x;

int *p3=&x;

…………..
• With the exception of NULL and 0, no other constant value can be assigned to a pointer variable.

11.4 ACCESSING A VARIABLE THROUGH ITS

POINTERS

• We can access the value of another
variable using the pointer variable.

Steps:

• Declare a normal variable, assign the
value.

• Declare a pointer variable with the
same type as the normal variable.

• Initialize the pointer variable with the
address of normal variable.

• Access the value of the variable by
using asterisk (*) - it is known
as dereference operator (indirection
operators).

#include <stdio.h>

 int main(void)

 {

 //normal variable

 int num = 100;

//pointer variable

 int *ptr;

 //pointer initialization

 ptr = #

//pritning the value

printf("value of num = %d\n", *ptr);

 return 0;

}

EXAMPLE
#include <stdio.h>

void main()

{

int x,y;

int *ptr;

x=10;

ptr=&x;

y=*ptr;

printf("Value of x is %d\n",x);

printf("%d is stored at address %u\n",x,&x);

printf("%d is stored at address %u\n",*&x, &x);

printf("%d is stored at address %u\n",*ptr,ptr);

printf("%d is stored at address %u\n",ptr,&ptr);

printf("%d is stored at address %u\n",y,&y);

*ptr=100;

printf("\nNew value of x =%d\n",x);

}

Output

Value of x is 10

10 is stored at address 2996846848

10 is stored at address 2996846848

10 is stored at address 2996846848

298120448 is stored at address 2996846856

10 is stored at address 2996846852

New value of x =100

ILLUSTRATION OF POINTER EXPRESSION

Stage values in the storage cells and their address

 x y ptr

Declaration

 2996846848 2996846852 298120448 address

x=10

 2996846848 2996846852 298120448 address

 ptr=&x

 address

y=*ptr

 address

 pointer to x

*ptr=100

10

10 2996846848

10 10 2996846848

100 10 2996846848

11.5 CHAIN OF POINTER
• Pointer to point to another pointer, thus

creating a chain of pointer.

 p2 p1 variable

• The pointer variable p2 contains the
address of the pointer variable p1, which
points to the location that contains the
desired value.

• This is known as multiple indirections.

• A variable that is pointer to a pointer must
be declared using additional indirection
operator symbol in front of the name.

 int **p2;

• The declaration tells the compiler that p2
is a pointer to a pointer of int type.

• The pointer p2 is not a pointer to an
integer, but rather a pointer to an integer
pointer.

• We can access the target value indirectly
pointed to by pointer to a pointer by
applying the indirection operator twice.

#include <stdio.h>

void main()

{

int x, *p1,**p2;

x=100;

p1=&x;

p2=&p1;

printf("pointer to pointer value %d",**p2);

}

Output

pointer to pointer value 100

address2 address1 value

11.6 POINTER EXPRESSIONS
• Pointer variables can be used in

expressions

Example

• If p1 and p2 are properly declared and
initialized pointers then the following
statements are valid.

y= *p1 * *p2;  y=(*p1) * (*p2)

sum= sum + *p1;

z=5* - *p1/ *p2 (5* (-(*p1)))/(*p2);

• There is blank space between / and
*p2

*p2= *p2 + 10;

p1+4;

p2-2;

p1-p2;

p1++;

-p2;

sum += *p2;

• In addition to arithmetic operations ,
the pointer can also be compared
using the relational operators.

p1>p2

p1==p2

p1 != p2

• We may not use pointers in division
or multiplications.

p1/p2

p1 * p2

p1/3

Example

#include <stdio.h>

int main()

{

 int a, b,*p1, *p2,x,y,z;

 a=10;

 b= 5;

 p1=&a;

 p2=&b;

 x= *p1 * *p2;

 y= *p1 + *p2;

 printf("Address of a = %u\n",a);

 printf("Address of b = %u\n",b);

 printf("a= %d\tb=%d\n",a,b);

 printf("x= %d\ty=%d\n",x,y);

 *p2= *p2 +5;

 *p1= *p1-5;

 z= *p1 * *p2 -7;

 printf("a= %d\tb=%d\n",a,b);

printf("*p1 = %d\n",*p1);

 printf("*p2 = %d\n",*p2);

 printf("z= %d\n",z);

 return 0;

}

Output

Address of a = 71870892

Address of b = 71870896

a= 10 b=5

x= 50 y=15

a= 5 b=10

*p1 = 5

*p2 = 10

z= 43

11.7 POINTER INCREMENT & SCALE FACTOR

p1++;

• The pointer p1 to point to the next value of its type.

• If p1 is an integer pointer with an initial value, say 4020, then the operation p1++, the

value of p1 will be 4022.

• Ie, the value increased by the length of the data type that it points to.

 char 1 byte

 int 2 bytes

 float 4 bytes

 long int 4 bytes

 double 8 bytes

11.8 POINTERS AND ARRAYS

• The address of &x[0] and x is the same. It's

because the variable name x points to the first

element of the array.

• &x[0] is equivalent to x. And, x[0] is equivalent

to *x.

• Similarly, &x[1] is equivalent to x+1 and x[1] is

equivalent to *(x+1).

• &x[2] is equivalent to x+2 and x[2] is equivalent

to *(x+2).

• Basically, &x[i] is equivalent to x+i and x[i] is

equivalent to *(x+i).

Example 1: Pointers and Arrays

#include <stdio.h>

 int main()

{

 int i, x[20], sum = 0,n;

printf("Enter the value of n: ");

scanf("%d",&n);

printf("Enter number one by one\n");

for(i = 0; i < n; ++i)

{

/* Equivalent to scanf("%d", &x[i]); */

scanf("%d", x+i);

 // Equivalent to sum += x[i]

 sum += *(x+i);

 }

printf("Sum = %d", sum);

return 0;

}

Output

Enter the value of n: 5

Enter number one by one

5

10

15

20

25

Sum = 75

Example :2

#include <stdio.h>

 int main()

 {

int *p,sum,i;

 int n,x[10];

printf ("Enter the value of n\n");

 scanf("%d",&n);

printf("Enter the array elements one by one\n");

for (i=0;i<n;i++)

 scanf("%d",&x[i]);

 p=x;

printf("Elements\t Value\t Address\n");

for (i=0;i<n;i++)

{

 printf("x[%d] %d %u\n",i,*p,p);

 sum +=*p;

 p++;

}

printf("\n Sum = %d",sum);

printf("\n address of first element (&x[0]) =

%u",&x[0]);

printf("\n p = %u",p);

return 0;

}

output

Enter the value of n

5

Enter the array elements one by one

1

2

3

4

5

 Elements Value Address

x[0]

1 2316341728

x[1] 2 2316341732

x[2] 3 2316341736

x[3] 4 2316341740

x[4] 5 2316341744

 Sum = 16

 address of first element (&x[0]) = 2316341728

 p = 2316341748

• Pointers can be used to manipulate two-dimensional arrays also.

• An two-dimensional array can be represented by the pointer expression as follows

• *(*(a+i)+j) or *(*(p+1)+j)

 0 1 2 3 4 5

 0  p

 1  p+1

 2  p+2

 3

 4 p+4

 5

 6  p+6

 *(p+4) *(p+4)+3

4,0 4,3

R

O

W

S

COLUMNS

p  pointer to first row

p+i  pointer to ith row

*(p+i)  pointer to first element in the ith row

*(p+i) +j  pointer to jth element in the ith

row

((p+i)+j)  valu stored in the ith row and

jth columns.

Example

#include<stdio.h>

int main()

{

 int arr[3][4] = { {11,22,33,44},

{55,66,77,88},{11,66,77,44}};

 int i, j;

for(i = 0; i < 3; i++)

 {

printf("Address of %d th array %u \n",i , *(arr + i));

 for(j = 0; j < 4; j++)

 {

 printf("arr[%d][%d]=%d\n", i, j, *(*(arr + i) + j));

 }

printf("\n\n");

 }

 // signal to operating system program ran fine

return 0;

}

Output

arr[2][3]=44Address of 0 th array 2692284448

arr[0][0]=11

arr[0][1]=22

arr[0][2]=33

arr[0][3]=44

Address of 1 th array 2692284464

arr[1][0]=55

arr[1][1]=66

arr[1][3]=88

Address of 2 th array 2692284480

arr[2][0]=11

arr[2][1]=66

arr[2][2]=77

arr[2][3]=44

11.9 POINTERS AND CHARACTER STRINGS

 • C supports an alternate method to create
strings using pointer variables of type
char.

Example

char *str= “Hello”;

• This creates a string for the literal and then
stores its address in the pointer variable
str.

• The pointer str now points to the first
character of the string “Hello” as

 str

We can also use runtime assignment for
giving values to a string pointer.

char *str;

str= “hello”;

#include <stdio.h>

#include <string.h>

 int main ()

 {

 char name[25];

char *ptr;

 strcpy(name,"gaccbe");

 ptr=name;

while(*ptr !='\0')

 {

 printf("\n %c is stored at address %u",*ptr,ptr);

 ptr++;

 }

 return 0;

}

Output
g is stored at address 3432464000

 a is stored at address 3432464001

 c is stored at address 3432464002

 c is stored at address 3432464003

 b is stored at address 3432464004

 e is stored at address 3432464005

H e l l o \0

11.10 ARRAY OF POINTERS

Example

char name[4][25];

• The name is a table containing four

names, each with maximum of 25

characters.

• The total storage requirements is 75 bytes.

• The individual strings will of equal

lengths.

Example

char *names[4] = {

 “Anu",

 “Banu",

 “Chandru",

 “Deepak"

 };

• Declares name to be an array of four

pointers to characters, each pointer

pointing to a particular name.

#include <stdio.h>

 const int MAX = 4;

 int main ()

 {

char *names[] = { “Anu", “Banu", “Chandru",
“Deepak" };

 int i = 0;

 for (i = 0; i < MAX; i++)

 {

printf("Value of names[%d] = %s\n", i, names[i]);

}

 return 0;

}

Output

Value of names[0] = Anu

Value of names[1] = Banu

Value of names[2] = Chandru

Value of names[3] =Deepak

11.11 POINTERS AS FUNCTION ARGUMENTS

• Pointer as a function parameter is used to

hold addresses of arguments passed during

function call.

• This is also known as call by reference.

• When a function is called by reference any

change made to the reference variable will

effect the original variable.

EXAMPLE

#include <stdio.h>

void exchange(int *a, int *b);

 int main()

 {

 int m = 10, n = 20;

printf("m = %d\n", m);

printf("n = %d\n\n", n);

swap(&m, &n);

printf("After Swapping:\n\n");

printf("m = %d\n", m);

 printf("n = %d", n);

 return 0;

 }

void exchange (int *a, int *b)

{

 int temp;

temp = *a;

 *a = *b;

 *b = temp;

 }

Output

m = 10

 n = 20

 After Swapping:

 m = 20

 n = 10

11.12 FUNCTIONS RETURNING POINTERS

• A function can return a single value by
its name or return multiple values
through pointer parameters.

• A function can also return a pointer to
the calling function.

• Local variables of function doesn't live
outside the function.

• They have scope only inside the
function.

• Hence if you return a pointer connected
to a local variable, that pointer will be
pointing to nothing when the function
ends.

#include <stdio.h>

int* larger(int*, int*);

void main()

{

 int a = 10;

int b = 20;

int *p;

p = larger(&a, &b);

printf("%d is larger",*p);

}

 int* larger(int *x, int *y)

 {

 if(*x > *y)

 return x;

Else

 return y;

 }

Output

20 is larger

11.13 POINTERS TO FUNCTIONS

• It is possible to declare a pointer pointing to
a function which can then be used as an
argument in another function.

• A pointer to a function is declared as
follows,

 type (*pointer-name)(parameter)

Example

 int (*sum)(); legal declaration of pointer to
function

 int *sum(); This is not a declaration of
pointer to function.

• A function pointer can point to a specific
function when it is assigned the name of that
function.

 int sum(int, int);

 int (*s)(int, int);

 s = sum;

• s is a pointer to a function sum.

• sum can be called using function
pointer s along with providing the required
argument values.

 s (10, 20);

Example

#include <stdio.h>

int sum(int x, int y)

 {

return x+y;

 }

int main()

 {

 int (*fp)(int, int);

fp = sum;

 int s = fp(10, 15);

printf("Sum is %d", s);

 return 0;

 }

Output

25

11.14 POINTERS AND STRUCTURES
• We know that the name of an array stands

for the address of its zero-th element.

• Also true for the names of arrays of

structure variables.

Example

struct inventory

 {

 int no;

 char name[30];

 float price;

} product[5], *ptr ;

• The name product represents the address

of the zero-th element of the structure

array.

• ptr is a pointer to data objects of the type

struct inventory.

• The assignment

ptr = product ;

 will assign the address of product [0] to ptr.

• Its member can be access

 ptr –>name ;

 ptr –> no ;

 ptr –> price;

The symbol “–>” is called the arrow
operator or member selection

operator.

• When the pointer ptr is incremented by

one (ptr++) :The value of ptr is actually

increased by sizeof(inventory).

• It is made to point to the next record.

• We can also use the notation

 (*ptr).no;

• When using structure pointers, we should

take care of operator precedence.

• Member operator “.” has higher
precedence than “*”.

• ptr –> no and (*ptr).no mean the same

thing.

• ptr.no will lead to error.

• The operator “–>” enjoys the
highest priority among operators

• ++ptr –> no will increment roll,

not ptr.

• (++ptr) –> no will do the intended

thing.

Example

void main ()

{

struct book

{

char name[25];

char author[25];

int edn;

};

struct book b1 = { "Programming in C",

"E Balagurusamy", 2 } ;

 struct book *ptr ;

 ptr = &b1 ;

printf ("\n%s %s edition %d ", b1.name,

b1.author, b1.edn) ;

printf ("\n%s %s edition %d", ptr-

>name, ptr->author, ptr->edn) ;

}

Output

Programming in C E Balagurusamy edition 2

Programming in C E Balagurusamy edition 2

