FOURIER SERIES
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5. If afunction f(x) is an even function in (-it, ) then its Fourier series expansion contains
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8. If a function f(x) is an odd function in (-L, L) then its Fourier series expansion contains
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9. A function f(x) can be expressed as a half range Fourier cosine series in (0, 1) as
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10. A function f(x) can be expressed as a half range Fourier sine series in (0, 1) as
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12. A function f(x) can be expressed as a half range Fourier sine series in (0, L) as
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