FOURIER SERIES

1. A function f(x) can be expressed as a Fourier series in $(0, 2\pi)$ as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

Where
$$a_0 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx$$

2. A function f(x) can be expressed as a Fourier series in $(-\pi, \pi)$ as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

Where
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

3. A function f(x) can be expressed as a Fourier series in (0, 2L) as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right]$$

Where
$$a_0 = \frac{1}{L} \int_{0}^{2L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{0}^{2L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{0}^{2L} f(x) \sin \frac{n\pi x}{L} dx$$

4. A function f(x) can be expressed as a Fourier series in (-L, L) as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right]$$

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

5. If a function f(x) is an even function in $(-\pi, \pi)$ then its Fourier series expansion contains

cosine terms only, i.e.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos nx]$$

Where
$$a_0 = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$$

6. If a function f(x) is an odd function in $(-\pi, \pi)$ then its Fourier series expansion contains

sine terms only, i.e.
$$f(x) = \sum_{n=1}^{\infty} [b_n \sin nx]$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx$$

7. If a function f(x) is an even function in (-L, L) then its Fourier series expansion contains

cosine terms only, i.e.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{L} \right]$$

$$a_0 = \frac{2}{L} \int_0^L f(x) \, dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$

8. If a function f(x) is an odd function in (-L, L) then its Fourier series expansion contains

sine terms only, i.e.
$$f(x) = \sum_{n=1}^{\infty} \left[b_n \sin \frac{n\pi x}{L} \right]$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

9. A function f(x) can be expressed as a half range Fourier cosine series in $(0, \pi)$ as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx \right]$$

Where
$$a_0 = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$$

10. A function f(x) can be expressed as a half range Fourier sine series in $(0, \pi)$ as

$$f(x) = \sum_{n=1}^{\infty} [b_n \sin nx]$$

$$b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

11. A function f(x) can be expressed as a half range Fourier cosine series in (0, L) as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{L} \right]$$

$$a_0 = \frac{2}{L} \int_0^L f(x) \, dx$$

$$a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

12. A function f(x) can be expressed as a half range Fourier sine series in (0, L) as

$$f(x) = \sum_{n=1}^{\infty} \left[b_n \sin \frac{n\pi x}{L} \right]$$

$$b_n = \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

13. Parseval's identity in $(0, 2\pi)$

$$\int_{0}^{2\pi} |f(x)|^{2} dx = \pi \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} \left[a_{n}^{2} + b_{n}^{2} \right] \right]$$

14. Parseval's identity in $(-\pi, \pi)$

$$\int_{-\pi}^{\pi} |f(x)|^2 dx = \pi \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left[a_n^2 + b_n^2 \right] \right]$$

15. Parseval's identity in (0, 2L)

$$\int_{0}^{2L} |f(x)|^{2} dx = L \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} \left[a_{n}^{2} + b_{n}^{2} \right] \right]$$

16. Parseval's identity in (-L, L)

$$\int_{-L}^{L} |f(x)|^2 dx = L \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left[a_n^2 + b_n^2 \right] \right]$$

17. Parseval's identity in $(0, \pi)$ provided half range cosine series

$$\int_{0}^{\pi} |f(x)|^{2} dx = \frac{\pi}{2} \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} [a_{n}^{2}] \right]^{-1}$$

18. Parseval's identity in $(0, \pi)$ provided half range sine series

$$\int_{0}^{\pi} |f(x)|^{2} dx = \frac{\pi}{2} \left[\sum_{n=1}^{\infty} [b_{n}^{2}] \right]$$

19. Parseval's identity in (0, L) provided half range cosine series

$$\int_{0}^{L} |f(x)|^{2} dx = \frac{L}{2} \left[\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} [a_{n}^{2}] \right]$$

20. Parseval's identity in (0, L) provided half range sine series

$$\int_{0}^{L} |f(x)|^{2} dx = \frac{L}{2} \left[\sum_{n=1}^{\infty} [b_{n}^{2}] \right]$$