UNIT 4

Contents:
Coding and Testing: Coding, Code Review, Software Documentation, Testing, Unit Testing, Black-
Box Testing, White-Box Testing, Debugging, Integration Testing, System Testing.

Intr ion:

o Coding is undertaken once the design phase is complete and the design documents have been
successfully reviewed.

o Inthe coding phase, every module specified in the design document is coded and unit tested.
During unit testing, each module is tested in isolation from other modules.

o After all the modules of a system have been coded and unit tested, the integration and system
testing phase is undertaken

o Integration and testing of modules is carried out according to an integration plan.

o The full product takes shape only after all the modules have been integrated together. System
testing is conducted on the full product. During system testing, the product is tested against its
requirements as recorded in the SRS document.

o Testing is an important phase in software development, requires the maximum effort and requires
the maximum effort.

Coding:
o The input to the coding phase is the design document produced at the end of the design phase.
o The design document contains not only the high-level design of the system in the form of a
module structure (e.g., a structure chart), but also the detailed design.
o The detailed design is usually documented in the form of module specifications where the data
structures and algorithms for each module are specified.
o The objective of the coding phase is to transform the design of a system into code in a high-level
language, and then to unit test this code.
» good software development organisations require their programmers to adhere to some well-
defined and standard style of coding which is called their coding standard.
o organisations formulate their own coding standards and require their developers to follow the
standards rigorously.
¢ The main advantages of adhering to a standard:
o A coding standard gives a uniform appearance to the codes written by different engineers.
o It facilitates code understanding and code reuse.
o It promotes good programming practices.

What is the difference between a coding guideline and a coding standard?

o It is mandatory for the programmers to follow the coding standards. Compliance of their code to
coding standards is verified during code inspection. Any code that does not

conform to the coding standards is rejected during code review and the code is reworked by the
concerned programmer.

In contrast, coding guidelines provide some general suggestions regarding the coding style to be
followed but leave the actual implementation of these guidelines to the discretion of the
individual developers.

Usually code review is carried out to ensure that the coding standards are followed and also to

detect as many errors as possible before testing. Reviews are an efficient way of removing errors from
code.

Coding Standards and Guidelines:

Good software development organisations usually develop their own coding standards and guidelines.

Representative coding standards:

Rules for limiting the use of globals: These rules list what types of data can be declared global and
what cannot, with a view to limit the data that needs to be defined with global scope.

Standard headers for different modules: The header of different modules should have standard
format and information for ease of understanding and maintenance.

Naming conventions for global variables, local variables, and constant identifiers: A popular
naming convention is that variables are named using mixed case lettering. Example

:GlobalData, localData, CONSTDATA

Conventions regarding error return values and exception handling mechanisms: The way error
conditions are reported by different functions in a program should be standard within an organisation.

Representative coding guidelines:

Do not use a coding style that is too clever or too difficult to understand: Code should be easy to
understand. Many inexperienced engineers actually take pride in writing cryptic and
incomprehensible code.

Avoid obscure side effects: The side effects of a function call include modifications to the
parameters passed by reference, modification of global variables, and 1/O operations. An obscure
side effect is one that is not obvious from a casual examination of the code. Obscure side effects
make it difficult to understand a piece of code.

Do not use an identifier for multiple purposes: Programmers often use the same identifier to
denote several temporary entities. There are several things wrong with this approach and hence should
be avoided.

Code should be well-documented: As a rule of thumb, there should be at least one comment line
on the average for every three source lines of code.

Length of any function should not exceed 10 source lines: A lengthy function is usually very
difficult to understand as it probably has a large number of variables and carries out many different
types of computations.

Do not use GOTO statements: Use of GOTO statements makes a program unstructured. This
makes the program very difficult to understand, debug, and maintain.

Code Review:

Testing is an effective defect removal mechanism. However, testing is applicable to only executable
code.
Review is a very effective technique to remove defects from source code. In fact, review has been
acknowledged to be more cost-effective in removing defects as compared to testing.
Code review for a module is undertaken after the module successfully compiles. That is, all the
syntax errors have been eliminated from the module.
Code review does not target to design syntax errors in a program, but is designed to detect logical,
algorithmic, and programming errors.
Code review has been recognised as an extremely cost-effective strategy for eliminating coding
errors and for producing high quality code.
Reviews directly detect errors, whereas testing only helps detect failures.
Eliminating an error from code involves three main activities—testing, debugging, and then
correcting the errors. Testing is carried out to detect if the system fails to work satisfactorily for
certain types of inputs and under certain circumstances. Once a failure is detected, debugging is
carried out to locate the error that is causing the failure and to remove it. Of the three testing
activities, debugging is possibly the most laborious and time consuming activity.
In code inspection, errors are directly detected, thereby saving the significant effort that would have
been required to locate the error. Normally, the following two types of reviews are carried out on the
code:

o Code Inspection

o Code Walkthrough

Code inspection.

During code inspection, the code is examined for the presence of some common programming
errors.

The principal aim of code inspection is to check for the presence of some common types of errors
that usually creep into code due to programmer mistakes and oversights and to check whether
coding standards have been adhered to.

The inspection process has several beneficial side effects, other than finding errors. The
programmer usually receives feedback on programming style, choice of algorithm, and
programming techniques. The other participants gain by being exposed to another programmer’s
errors.

o Good software development companies collect statistics regarding different types of errors that are
commonly committed by their engineers and identify the types of errors most frequently
committed.

o Such a list of commonly committed errors can be used as a checklist during code inspection to look
out for possible errors.

o Following is a list of some classical programming errors which can be checked during code
inspection:

o Use of uninitialised variables.

o Jumps into loops.

o Non-terminating loops.

o Incompatible assignments.

o Array indices out of bounds.

o Improper storage allocation and deallocation.

o Mismatch between actual and formal parameters in procedure calls.

o Use of incorrect logical operators or incorrect precedence among operators.
o Improper modification of loop variables.

o Comparison of equality of floating point values.

o Dangling reference caused when the referenced memory has not been allocated.

Code walkthrough.

o Code walkthrough is an informal code analysis technique.
o In this technique, a module is taken up for review after the module has been coded, successfully
compiled, and all syntax errors have been eliminated.
o A few members of the development team are given the code a couple of days before the walkthrough
meeting.
o Each member selects some test cases and simulates execution of the code by hand.
o The main objective of code walkthrough is to discover the algorithmic and logical errors in the code.
o Even though code walkthrough is an informal analysis technique, several guidelines have evolved
over the years. Guidelines are based on personal experience, common sense, and several other
subjective factors.
o The team performing code walkthrough should not be either too big or too small. Ideally, it
should consist of between three to seven members.
o Discussions should focus on discovery of errors and avoid deliberations on how to fix the
discovered errors.
o In order to foster cooperation and to avoid the feeling among the engineers that they are being
watched and evaluated in the code walkthrough meetings, managers should not attend the
walkthrough meetings.

Software Documentation:

When a software is developed, in addition to the executable files and the source code, several kinds of
documents such as users’ manual, software requirements specification (SRS) document, design document,
test document, installation manual, etc., are developed as part of the software engineering process.

All these documents are considered a vital part of any good software development practice. Good
documents are helpful in the following ways:
o Good documents help enhance understandability of code.
o Documents help the users to understand and effectively use the system.
o Good documents help to effectively tackle the manpower turnover problem
o Production of good documents helps the manager to effectively track the progress of the project
Different types of software documents can broadly be classified into the following:
Internal documentation:
o These are provided in the source code itself. Internal documentation can be provided in the code in
several forms. The important types of internal documentation are the following:
o Comments embedded in the source code.
o Use of meaningful variable names.
o Module and function headers.
o Code indentation.
o Code structuring (i.e., code decomposed into modules and functions).
o Use of enumerated types.
o Use of constant identifiers.
o Use of user-defined data types.
o Even when a piece of code is carefully commented, meaningful variable names have been found to
be the most helpful in understanding the code.
External documentation:
o These are the supporting documents such as SRS document, installation document, user manual,
design document, and test document.
o A systematic software development style ensures that all these documents are of good quality and
are produced in an orderly fashion.
o Animportant feature that is required of any good external documentation is consistency with the
code.
o If the different documents are not consistent, a lot of confusion is created for somebody trying to
understand the software.
o Every change made to the code should be reflected in the relevant external documents.
o Another important feature required for external documents is proper understandability by the
category of users for whom the document is designed.
¢ Gunning’s Fog Index:
o Gunning’s fog index (developed by Robert Gunning in 1952) is a metric that has been designed
to measure the readability of a document.

o The computed metric value (fog index) of a document indicates the number of years of formal
education that a person should have, in order to be able to comfortably understand that
document.

o The Gunning’s fog index of a document D can be computed as follows:

sentences

> l o . .
fog(D) = 0.4 x (&) + per cent of words having 3 or more syllables

Testing

The aim of program testing is to help realise/identify all defects in a program.

However, in practice, even after satisfactory completion of the testing phase, it is not possible

to guarantee that a program is error free.

This is because the input data domain of most programs is very large, and it is not practical to test the
program exhaustively with respect to each value that the input can assume.

We must remember that careful testing can expose a large percentage of the defects existing in
a program

Testing terminology:

Mistake: A mistake is essentially any programmer action that later shows up as an incorrect result
during program execution. A programmer may commit a mistake in almost any development activity.
Error: An error is the result of a mistake committed by a developer in any of the development
activities. Among the extremely large variety of errors that can exist in a program. The terms error,
fault, bug, and defect are considered to be synonyms.
Failure: A failure of a program essentially denotes an incorrect behaviour exhibited by the program
during its execution. An incorrect behaviour is observed either as an incorrect result produced or as
an inappropriate activity carried out by the program.
Test-case: A test case is a triplet [l , S, R], where I is the data input to the program under test, S is
the state of the program at which the data is to be input, and R is the result expected to be produced
by the program. The state of a program is also called its execution mode.

o A positive test case is designed to test whether the software correctly performs a required

functionality
o A negative test case is designed to test whether the software carries out something that is not
required of the system.

Test scenario: A test scenario is an abstract test case in the sense that it only identifies the aspects of
the program that are to be tested without identifying the input, state, or output. A test case can be said
to be an implementation of a test scenario.
Test script: A test script is an encoding of a test case as a short program. Test scripts are developed
for automated execution of the test cases.
Test suite: A test suite is the set of all tests that have been designed by a tester to test a given
program.

Testability: Testability of a requirement denotes the extent to which it is possible to determine
whether an implementation of the requirement conforms to it in both functionality and performance.
Failure mode: A failure mode of a software denotes an observable way in which it can fail.
Equivalent faults: Equivalent faults denote two or more bugs that result in the system failing in the
same failure mode.

Validation vs Verification:

The objectives of both verification and validation techniques are very similar since both these
techniques are designed to help remove errors in a software.
The underlying principles of these two bug detection techniques and their applicability are very
different.
Verification:
o Verification is the process of determining whether the output of one phase of software
development conforms to that of its previous phase;
o Verification is to check if the work products produced after a phase conform to that which was
input to the phase.
o Techniques used for verification include review, simulation, formal verification, and testing.
Validation:
o Validation is the process of determining whether a fully developed software conforms to its
requirements specification
o Validation is applied to the fully developed and integrated software to check if it satisfies
the customer’s requirements.
o System testing can be considered as a validation step where it is determined whether the fully
developed code is as per its requirements specification.

Error detection techniques = Verification techniques + Validation techniques

How to test a Program:

Testing a program involves executing the program with a set of test inputs and observing if the
program behaves as expected.

If the program fails to behave as expected, then the input data and the conditions under which it
fails are noted for later debugging and error correction.

Unless the conditions under which a software fails are noted down, it becomes difficult for the
developers to reproduce a failure observed by the testers.

Testing Activities:

Test suite design: The set of test cases using which a program is to be tested is designed possibly
using several test case design techniques.

Running test cases and checking the results to detect failures: Each test case is run and the
results are compared with the expected results. A mismatch between the actual result and expected
results indicates a failure.

Locate error: Inthis activity, the failure symptoms are analysed to locate the errors.

o Error correction: After the error is located during debugging, the code is appropriately
changed to correct the error

Code = /
/ \ Run te sl\
: " [casesand | 1
Design ' Design "—.‘ Test suite . chask ‘—-‘ Failure list
document " test suite | / T -

\ \ result
SRS |7\ __,/ e
document
p— — '» —
> . -~ e
4 N\ / \
Corrected [Corrected | Error (Debug \
o [SE . . *I :
program \ Errors / list \ program |
\ \
\ \
o B

Testing Process
Unit Testing
o Unit testing is undertaken after a module has been coded and reviewed.
o This activity is typically undertaken by the coder of the module himself in the coding phase.
o Before carrying out unit testing, the unit test cases have to be designed and the test
environment for the unit under test has to be developed.
o In order to test a single module, we need a complete environment to provide all relevant code that is
necessary for execution of the module.
o Thatis, besides the module under test, the following are needed to test the module:
o The procedures belonging to other modules that the module under test calls.
o Non-local data structures that the module accesses.
o A procedure to call the functions of the module under test with appropriate
parameters.
o Modules required to provide the necessary environment (which either call or are called by the
module under test) are usually not available until they too have been unit tested.
o Inthis context, stubs and drivers are designed to provide the complete environment for a module so
that testing can be carried out.

Stub: A stub procedure is a dummy procedure that has the same 1/0O parameters as the function called by the
unit under test but has a highly simplified behaviour.

<‘ Driver -) -
Global
v data /
Module under test -~
S S
C Stub =]

Driver: A driver module should contain the non-local data structures accessed by the module under test.
Additionally, it should also have the code to call the different functions of the unit under test with
appropriate parameter values for testing.

o Unit testing is referred to as testing in the small, whereas integration and system testing are referred to
as testing in the large.

Black-Box testing:

o In black-box testing, test cases are designed from an examination of the input/output values
only and no knowledge of design or code is required.
o The following are the two main approaches available to design black box test cases:
o Equivalence class partitioning
o Boundary value analysis

Equivalence class partitioning:
o In the equivalence class partitioning approach, the domain of input values to the program under test

is partitioned into a set of equivalence classes.

o The partitioning is done such that for every input data belonging to the same equivalence class, the
program behaves similarly.

o The main idea behind defining equivalence classes of input data is that testing the code with any one
value belonging to an equivalence class is as good as testing the code with any other value belonging
to the same equivalence class.

o Equivalence classes for a unit under test can be designed by examining the input data and output
data.

o The following are two general guidelines for designing the equivalence classes:

1. If the input data values to a system can be specified by a range of values, then one valid and
two invalid equivalence classes need to be defined. For example, if the equivalence class is the
set of integers in the range 1 to 10 (i.e., [1,10]), then the invalid equivalence classes are
[F0,0], [11,+00].

2. If the input data assumes values from a set of discrete members of some domain, then one
equivalence class for the valid input values and another equivalence class for the invalid input
values should be defined. For example, if the valid equivalence

classes are {A,B,C}, then the invalid equivalence class is U-{A,B,C} where U is the universe
of possible input values.

Boundary Value Analysis:
o A type of programming error that is frequently committed by programmers is missing out on the

special consideration that should be given to the values at the boundaries of different equivalence
classes of inputs.

o Boundary value analysis-based test suite design involves designing test cases using the values at the
boundaries of different equivalence classes.

o Todesign boundary value test cases, it is required to examine the equivalence classes to check if any
of the equivalence classes contains a range of values. For those equivalence classes that are not a
range of values no boundary value test cases can be defined.

o For an equivalence class that is a range of values, the boundary values need to be included in the test
suite. For example, if an equivalence class contains the integers in the range 1 to 10, then the
boundary value test suite is {0,1,10,11}.

Summary of the Black-box Test Suite Desian Approach:
We now summarise the important steps in the black-box test suite design approach:

o Examine the input and output values of the program.

o Identify the equivalence classes.

o Design equivalence class test cases by picking one representative value from each equivalence class.

o Design the boundary value test cases as follows. Examine if any equivalence class is a range of
values. Include the values at the boundaries of such equivalence classes in the test suite.

hite- ..

o White-box testing is an important type of unit testing. A large number of white-box testing strategies
exist.
o Each testing strategy essentially designs test cases based on analysis of some aspect of source code
and is based on some heuristic.
Basic Concepts:
A white-box testing strategy can either be coverage-based or fault based.
Fault-based testing: A fault-based testing strategy targets to detect certain types of faults. These faults
that a test strategy focuses on constitutes the fault model of the strategy..
Coverage-based testing: A coverage-based testing strategy attempts to execute (or cover) certain
elements of a program.

Coverage-Based testing strategies:

1. Statement Coverage:
o The statement coverage strategy aims to design test cases so as to execute every statement in a

program at least once.

o The principal idea governing the statement coverage strategy is that unless a statement is
executed, there is no way to determine whether an error exists in that statement.

o A weakness of the statement- coverage strategy is that executing a statement once and
observing that it behaves properly for one input value is no guarantee that it will behave
correctly for all input values.

o Nevertheless, statement coverage is a very intuitive and appealing testing technique.

2. Branch Coverage:

o Atestsuite satisfies branch coverage, if it makes each branch condition in the program to assume
true and false values in turn.

o For branch coverage each branch in the CFG representation of the program must be taken at
least once, when the test suite is executed.

o Branch testing is also known as edge testing, since in this testing scheme, each edge of a
program’s control flow graph is traversed at least once.

3. Multiple Condition Coverage:

o In the multiple condition (MC) coverage-based testing, test cases are designed to make each
component of a composite conditional expression to assume both true and false values.

o For example, consider the composite conditional expression ((c1 .and.c2).or.c3). A test suite
would achieve MC coverage, if all the component conditions c1, c2 and c3 are each made to
assume both true and false values.

o Branch testing can be considered to be a simplistic condition testing strategy where only the
compound conditions appearing in the different branch statements are made to assume the true
and false values.

o Itis easy to prove that condition testing is a stronger testing strategy than branch testing.

4. Path Coverage:

o A test suite achieves path coverage if it executes each linearly independent paths (or basis paths)
at least once.

o A linearly independent path can be defined in terms of the control flow graph (CFG) of a
program.

Control flow graph (CEG):
o Acontrol flow graph describes how the control flows through the program.
o A control flow graph describes the sequence in which the different instructions of a program
get executed.

o We need to first number all the statements of a program.

o A CFG is a directed graph consisting of a set of nodes and edges (N, E), such that each node

n € N corresponds to a unique program statement and an edge exists between two nodes if
control can transfer from one node to the other.

o We can easily draw the CFG for any program, if we know how to represent the sequence,
selection, and iteration types of statements in the CFG.

int compute gcd(int x, int y)
1l while(x!=y) {
2 if (x>y) then
3 X=X~-y:
4 else y=y-x;
5 }
6

return x;

\

(6)
-
(a) An example program (b) Control flow graph

Control Flow Graph for an example program
Path:
o Apaththrough a program is any node and edge sequence from the start node to a terminal
node of the control flow graph of a program.
o Please note that a program can have more than one terminal node when it contains multiple
exit or return types of statements.
o Writing test cases to cover all paths of a typical program is impractical since there can be an
infinite number of paths through a program in presence of loops.
o Path coverage testing does not try to cover all paths, but only a subset of paths called
linearly independent paths (or basis paths).
Linearly independent set of paths (or basis path set):
o Aset of paths for a given program is called a linearly independent set of paths (the basis

set), if each path in the set introduces at least one new edge that is not included in any
other path in the set.

0

If a set of paths is linearly independent of each other, then no path in the set can be obtained
through any linear operations (i.e., additions or subtractions) on the other paths in the set.

McCabe’s Cyclomatic Complexity Metric:

It is straightforward to identify the linearly independent paths for simple programs, for more
complex programs it is not easy to determine the number of independent paths.
McCabe’s cyclomatic complexity metric is an important result that lets us compute the
number of linearly independent paths for any arbitrary program.
McCabe’s cyclomatic complexity defines an upper bound for the number of linearly
independent paths through a program.
1. Method 1:
Given a control flow graph G of a program, the cyclomatic complexity V(G) can be computed
as:
V(G)=E-N+2
where, N is the number of nodes of the control flow graph and E is the number of edges in
the control flow graph.
For the CFG of example shown in above figure (GCD function),, E = 7 and N = 6.
Therefore, the value of the Cyclomatic complexity =7 -6 +2 = 3.
2. Method 2:
An alternate way of computing the cyclomatic complexity of a program is based on a
visual inspection of the control flow graph.
In this method, the cyclomatic complexity V (G) for a graph G is given by the following
expression:
V(G) = Total number of non-overlapping bounded areas + 1
Consider the CFG example shown in above figure (GCD function). From a visual
examination of the CFG the number of bounded areas is 2. Therefore the cyclomatic
complexity, computed with this method is also 2+1=3.
3. Method 3:
The cyclomatic complexity of a program can also be easily computed by computing the
number of decision and loop statements of the program. If N is the number of decision
and loop statements of a program, then the McCabe’s metric is equal to N + 1.

Steps to carry out path coverage-based testing:
The following is the sequence of steps that need to be undertaken for deriving the path coverage-

based test cases for a program:

1.
2.
3.

Draw control flow graph for the program.

Determine the McCabe’s metric V(G).

Determine the cyclomatic complexity. This gives the minimum number of test cases required
to achieve path coverage.

Repeat

a. Test using a randomly designed set of test cases.

b. Perform dynamic analysis to check the path coverage achieved.

Until at least 90 percent path coverage is achieved.
5. Data Flow-based testing:
o Data flow based testing method selects test paths of a program according to the definitions
and uses of different variables in a program.
o Consider a program P. For a statement numbered S of P , let
DEF(S) = {X /statement S contains a definition of X } and
USES(S)= {X /statement S contains a use of X }
o For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}.
o The definition of variable X at statement S is said to be live at statement S1, if there exists a
path from statement S to statement S1 which does not contain any definition of X .
o All definitions criterion is a test coverage criterion that requires that an adequate test set should
cover all definition occurrences.
o Alluse criteria requires that all uses of a definition should be covered.

Fault-based Testing strategies:
Mutation Testing:

Mutation testing is a fault-based testing technique in the sense that mutation test cases are designed
to help detect specific types of faults in a program.

In mutation testing, a program is first tested by using an initial test suite designed by using various
white box testing strategies.

After the initial testing is complete, mutation testing can be taken up.

The idea behind mutation testing is to make a few arbitrary changes to a program at a time.

Each time the program is changed, it is called a mutated program and the change effected is called a
mutant.

A mutation operator makes specific changes to a program.

A mutant may or may not cause an error in the program.

If a mutant does not introduce any error in the program, then the original program and the mutated
program are called equivalent programs.

A mutated program is tested against the original test suite of the program.

o If there exists at least one test case in the test suite for which a mutated program yields an
incorrect result, then the mutant is said to be dead, since the error introduced by the mutation
operator has successfully been detected by the test suite.

o If a mutant remains alive even after all the test cases have been exhausted, the test suite is
enhanced to kill the mutant.

Mutation testing involves generating a large number of mutants.

Also each mutant needs to be tested with the full test suite.

Obviously therefore, mutation testing is not suitable for manual testing.

Several test tools are available that automatically generate mutants for a given program.

D

After a failure has been detected, it is necessary to first identify the program statement(s) that are in error
and are responsible for the failure, the error can then be fixed.

Debugging Approaches:
The following are some of the approaches that are popularly adopted by the programmers for debugging:

1. Brute force method:

This is the most common method of debugging but is the least efficient method.

In this approach, print statements are inserted throughout the program to print the intermediate
values with the hope that some of the printed values will help to identify the statement in error.

This approach becomes more systematic with the use of a symbolic debugger, because values
of different variables can be easily checked and breakpoints and watchpoints can be easily set
to test the values of variables effortlessly.

2. Backtracking:

This is also a fairly common approach. In this approach, starting from the statement at which
an error symptom has been observed, the source code is traced backwards until the error is
discovered.

3. Cause elimination method:

In this approach, once a failure is observed, the symptoms of the failure are noted.
Based on the failure symptoms, the causes which could possibly have contributed to the
symptom is developed and tests are conducted to eliminate each.

4. Program slicing:

This technigue is similar to back tracking. In the backtracking approach, one often has to
examine a large number of statements.

However, the search space is reduced by defining slices.

A slice of a program for a particular variable and at a particular statement is the set of source
lines preceding this statement that can influence the value of that variable.

Debugging guidelines:
Debugging is often carried out by programmers based on their ingenuity and experience. The following

are some general guidelines for effective debugging:

Many times debugging requires a thorough understanding of the program design. Trying to debug
based on a partial understanding of the program design may require an inordinate amount of effort
to be put into debugging even for simple problems.

Debugging may sometimes even require full redesign of the system. In such cases, a common
mistake that novice programmers often make is attempting not to fix the error but its symptoms.
One must beware of the possibility that an error correction may introduce new errors. Therefore
after every round of error-fixing, regression testing must be carried out.

Integration Testing:

Integration testing is carried out after all (or at least some of) the modules have been unit tested.
Successful completion of unit testing, to a large extent, ensures that the unit (or module) as a whole
works satisfactorily.

In this context, the objective of integration testing is to detect the errors at the module interfaces
(call parameters).

The objective of integration testing is to check whether the different modules of a program interface
with each other properly.

During integration testing, different modules of a system are integrated in a planned manner
using an integration plan.

The integration plan specifies the steps and the order in which modules are combined to realise the
full system.

After each integration step, the partially integrated system is tested.

By examining the structure chart, the integration plan can be developed.

Any one (or a mixture) of the following approaches can be used to develop the test plan:

1. Big-bang approach to integration testing:

o Big-bang testing is the most obvious approach to integration testing. In this approach,
all the modules making up a system are integrated in a single step.

o In simple words, all the unit tested modules of the system are simply linked together
and tested.

o However, this technique can meaningfully be used only for very small systems.

o The main problem with this approach is that once a failure has been detected during
integration testing, it is very difficult to localise the error as the error may potentially lie in
any of the modules.

2. Bottom-up approach to integration testing:

o Large software products are often made up of several subsystems.

o A subsystem might consist of many modules which communicate among each other
through well-defined interfaces.

o Inbottom-up integration testing, first the modules for each subsystem are integrated.

o Thus, the subsystems can be integrated separately and independently.

o The primary purpose of carrying out the integration testing of a subsystem is to test
whether the interfaces among various modules making up the subsystem work
satisfactorily.

o Ina pure bottom-up testing no stubs are required, and only test-drivers are required.

3. Top-down approach to integration testing:

s Top-down integration testing starts with the root module in the structure chart and one or
two subordinate modules of the root module.

o After the top-level ‘skeleton’ has been tested, the modules that are at the immediately
lower layer of the ‘skeleton’ are combined with it and tested.

Top-down integration testing approach requires the use of program stubs to simulate the
effect of lower-level routines that are called by the routines under test.
A pure top-down integration does not require any driver routines.

4. Mixed approach to integration testing:

The mixed (also called sandwiched) integration testing follows a combination of top-down
and bottom-up testing approaches.

In a top-down approach, testing can start only after the top-level modules have been
coded and unit tested.

Similarly, bottom-up testing can start only after the bottom level modules are ready.
The mixed approach overcomes this shortcoming of the top-down and bottom-up
approaches.

In the mixed testing approach, testing can start as and when modules become available
after unit testing.

Therefore, this is one of the most commonly used integration testing approaches.

In this approach, both stubs and drivers are required to be designed.

System Testing

o After all the units of a program have been integrated together and tested, system testing is taken up.
o System tests are designed to validate a fully developed system to assure that it meets its
requirements.
o Thetest cases are therefore designed solely based on the SRS document.
o There are essentially three main kinds of system testing depending on who carries out testing:
1. Alpha Testing: Alpha testing refers to the system testing carried out by the test team within
the developing organisation.
2. Beta Testing: Beta testing is the system testing performed by a select group of friendly
customers.
3. Acceptance Testing: Acceptance testing is the system testing performed by the customer
to determine whether to accept the delivery of the system.
o In each of the above types of system tests, the test cases can be the same, but the difference is
with respect to who designs test cases and carries out testing.
o The system test cases can be classified into functionality and performance test cases.
o Before a fully integrated system is accepted for system testing, smoke testing is
performed.
Smoke Testing
o Smoke testing is carried out before initiating system testing to ensure that system testing
would be meaningful, or whether many parts of the software would fail.

o The idea behind smoke testing is that if the integrated program cannot pass even the basic tests,
it is not ready for vigorous testing.
o For smoke testing, a few test cases are designed to check whether the basic
functionalities are working.
The system test cases can be classified into functionality and performance test cases.

Performance Testing:

Performance testing is an important type of system testing.

Performance testing is carried out to check whether the system meets the nonfunctional requirements
identified in the SRS document.

There are several types of performance testing corresponding to various types of non-
functional requirements.

All performance tests can be considered as black-box tests.

Stress testing:
o Stress testing is also known as endurance testing.

o Stress testing evaluates system performance when it is stressed for short periods of time.
o Stress tests are black-box tests which are designed to impose a range of abnormal and even
illegal input conditions so as to stress the capabilities of the software.
o Input data volume, input data rate, processing time, utilisation of memory, etc., are tested
beyond the designed capacity.
o Stress testing is especially important for systems that under normal circumstances operate
below their maximum capacity but may be severely stressed at some peak demand hours.
Volume testing:
o Volume testing checks whether the data structures (buffers, arrays, queues, stacks, etc.) have
been designed to successfully handle extraordinary situations.
Configuration testing:
o Configuration testing is used to test system behaviour in various hardware and software
configurations specified in the requirements.
o Sometimes systems are built to work in different configurations for different users.
Compatibility testing ;
o This type of testing is required when the system interfaces with external systems (e.g.,
databases, servers, etc.).
o Compatibility aims to check whether the interfaces with the external systems are performing
as required.
Regression testing:
o This type of testing is required when a software is maintained to fix some bugs or enhance
functionality, performance
Recovery testing:
o Recovery testing tests the response of the system to the presence of faults, or loss of power,
devices, services, data, etc.

o The system is subjected to the loss of the mentioned resources (as discussed in the SRS
document) and it is checked if the system recovers satisfactorily.
7. Maintenance testing:
o This addresses testing the diagnostic programs, and other procedures that are required to
help maintenance of the system.
o ltisverified that the artifacts exist and they perform properly.
8. Security testing:
o Security testing is essential for software that handle or process confidential data that is to be
guarded against pilfering.
o It needs to be tested whether the system is fool-proof from security attacks such as intrusion
by hackers.

Contents:

Software Reliability and Quality Management: Software Reliability, Statistical Testing, Software
Quality, Software Quality Management System, SEI Capability Maturity Model, Personal Software
Process.

ware Reliabili

o The reliability of a software product essentially denotes its trustworthiness or
dependability.

o Alternatively, the reliability of a software product can also be defined as the probability of the
product working “correctly” over a given period of time.

o Itisobvious that a software product having a large number of defects is unreliable.

o Itisalso very reasonable to assume that the reliability of a system improves, as the number of defects
in it is reduced.

o Itis very difficult to characterize the observed reliability of a system in terms of the number of latent
defects in the system using a simple mathematical expression.

o It has been experimentally observed by analyzing the behavior of a large number of programs
that 90 per cent of the execution time of a typical program is spent in executing only 10
percent of the instructions in the program.

o The most used 10 per cent instructions are often called the core 1 of a program.

o The rest 90 per cent of the program statements are called non-core and are on the average
executed only for 10 per cent of the total execution time.

o It therefore may not be very surprising to note that removing 60 per cent product defects from
the least used parts of a system would typically result in only 3 per cent improvement to the
product reliability.

o The quantity by which the overall reliability of a program improves due to the correction of a single
error depends on how frequently the instruction having the error is executed.

o The quantity by which the overall reliability of a program improves due to the correction of a single
error depends on how frequently the instruction having the error is executed.

o Apart from this, reliability also depends upon how the product is used, or on its execution profile.

o If the users execute only those features of a program that are “correctly” implemented, none of the
errors will be exposed and the perceived reliability of the product will be high.

o On the other hand, if only those functions of the software which contain errors are invoked, then a
large number of failures will be observed and the perceived reliability of the system will be very low.

Different categories of users of a software product typically execute different functions of a software
product.
We can summarize the main reasons that make software reliability more difficult to measure
than hardware reliability:

o The reliability improvement due to fixing a single bug depends on where the bug is located in

the code.
o The perceived reliability of a software product is observer-dependent.
o The reliability of a product keeps changing as errors are detected and fixed.

Hardware Reliability vs Software Reliability:

An important characteristic feature that sets hardware and software reliability issues apart is the
difference between their failure patterns.

Hardware components fail due to very different reasons as compared to software components.
Hardware components fail mostly due to wear and tear, whereas software components fail due to
bugs.

To fix a hardware fault, one has to either replace or repair the failed part. In contrast, a software
product would continue to fail until the error is tracked down and either the design or the code is
changed to fix the bug.

hardware reliability study is concerned with stability

The aim of software reliability study would be reliability growth.

A comparison of the changes in failure rate over the product lifetime for a typical hardware product
as well as a software product are sketched in the following figure.

Product release Retirement

'; Burnin I Wear out I
be I | 8 '
g I I £ I
L I | o T I
- £
& | Useful life | 1| NS UsstuL Lte '

I) Z |Tes Yy I

7 = /
il 44 :()lmolutv
! ! ~ 1 1 >
Time Time
(a) Hardware product (b) Software product

Change in failure rate of a product

Reliability Metrics for Software Products:

The reliability requirements for different categories of software products may be different

it is necessary that the level of reliability required for a software product should be specified in the
software requirements specification (SRS) document.

We need some metrics to quantitatively express the reliability of a software product.

o A good reliability measure should be observer-independent. We discuss six metrics that correlate
with reliability as follows.
1. Rate of occurrence of failure (ROCOF):
¢ ROCOF measures the frequency of occurrence of failures. ROCOF measure of a software
product can be obtained by observing the behavior of a software product in operation
over a specified time interval and then calculating the ROCOF value as the ratio of the
total number of failures observed and the duration of observation.
2. Mean time to failure (MTTF):
o MTTF is the time between two successive failures, averaged over a large number of
failures.
o Tomeasure MTTF, we can record the failure data for n failures.
o Itisimportant to note that only run time is considered in the time measurements.
3. Mean time to repair (MTTR):
o Once failure occurs, some time is required to fix the error.
s MTTR measures the average time it takes to track the errors causing the failure and to fix
them.
4. Mean time between failure (MTBF):
o The MTTF and MTTR metrics can be combined to get the MTBF metric:
MTBF=MTTF+MTTR.
o Thus, MTBF of 300 hours indicates that once a failure occurs, the next failure is expected
after 300 hours.
5. Probability of failure on demand (POFOD):
o Unlike the other metrics discussed, this metric does not explicitly involve time
measurements.
o POFOD measures the likelihood of the system failing when a service request is made.
o For example, a POFOD of 0.001 would mean that 1 out of every 1000 service
requests would result in a failure.
o POFOD metric is very appropriate for software products that are not required to run
continuously.
6. Availability:
o Availability of a system is a measure of how likely would the system be available for use
over a given period of time.
o This metric not only considers the number of failures occurring during a time interval,
but also takes into account the repair time (down time) of a system when a failure occurs.

Shortcomings of reliability metrics of software products:
o All the above reliability metrics suffer from several shortcomings.

o One of the reasons is that these metrics are centered around the probability of occurrence of system
failures but take no account of the consequences of failures.

o These reliability models do not distinguish the relative severity of different failures.
o In order to estimate the reliability of a software product more accurately, it is necessary to classify
various types of failures.
o Please note that the different classes of failures may not be mutually exclusive.
o Ascheme of classification of failures is as follows:
o Transient: Transient failures occur only for certain input values while invoking a
function of the system.
o Permanent: Permanent failures occur for all input values while invoking a function of the
system.
o Recoverable: When a recoverable failure occurs, the system can recover without having
to shutdown and restart the system (with or without operator intervention).
o Unrecoverable: In unrecoverable failures, the system may need to be restarted.
o Cosmetic: These classes of failures cause only minor irritations, and do not lead to incorrect
results. An example of a cosmetic failure is the situation where the mouse button has to be
clicked twice instead of once to invoke a given function through the graphical user interface.

istical testing:

o Statistical testing is a testing process whose objective is to determine the reliability of the product
rather than discovering errors.

o The test cases are designed for statistical testing with an entirely different objective from those of
conventional testing.

o Tocarry out statistical testing, we need to first define the operation profile of the product.

o Operation profile:

o Different categories of users may use a software product for very different purposes.

o We can define the operation profile of a software as the probability of a user selecting the
different functionalities of the software.

o If we denote the set of various functionalities offered by the software by {fi}, the operational
profile would associate each function {fi} with the probability with which an average user
would select {f} as his next function to use.

o Thus, we can think of the operation profile as assigning a probability value pi to each
functionality f; of the software.

Steps in statistical testing:
o Thefirst step is to determine the operation profile of the software.

o The next step is to generate a set of test data corresponding to the determined operation profile.

o The third step is to apply the test cases to the software and record the time between each failure.

o After a statistically significant number of failures have been observed, the reliability can be
computed.

For accurate results, statistical testing requires some fundamental assumptions to be satisfied.

0

0

It requires a statistically significant number of test cases to be used.
It further requires that a small percentage of test inputs that are likely to cause system failure to
be included.

Now let us discuss the implications of these assumptions.

0

0

It is straightforward to generate test cases for the common types of inputs, since one can easily
write a test case generator program which can automatically generate these test cases.

However, it is also required that a statistically significant percentage of the unlikely inputs
should also be included in the test suite.

Creating these unlikely inputs using a test case generator is very difficult.

Software Qualit

Traditionally, the quality of a product is defined in terms of its fitness of purpose.

A good quality product does exactly what the users want it to do, since for almost every product,
fitness of purpose is interpreted in terms of satisfaction of the requirements laid down in the SRS
document.

“Fitness of purpose” is not a wholly satisfactory definition of quality for software products.

0

Even though it may be functionally correct, we cannot consider it to be a quality product, if it has
an almost unusable user interface.

The modern view of a quality associates with a software product several quality factors (or attributes)
such as the following:

0

Portability: A software product is said to be portable, if it can be easily made to work in
different hardware and operating system environments, and easily interface with external
hardware devices and software products.

Usability: A software product has good usability, if different categories of users (i.e., both expert
and novice users) can easily invoke the functions of the product.

Reusability: A software product has good reusability, if different modules of the product can
easily be reused to develop new products.

Correctness: A software product is correct, if different requirements as specified in the SRS
document have been correctly implemented.

Maintainability: A software product is maintainable, if errors can be easily corrected as and
when they show up, new functions can be easily added to the product, and the functionalities of
the product can be easily modified, etc.

McCall’s guality factors:
MccCall distinguishes two levels of quality attributes.

0

0

The higher level attributes, known as quality factors or external attributes can only be measured
indirectly.
The second-level quality attributes are called quality criteria.

o By combining the ratings of several criteria, we can either obtain a rating for the quality factors, or
the extent to which they are satisfied.

o The reliability cannot be measured directly, but by measuring the number of defects encountered
over a period of time.

Software Quality Management System:

o A quality management system (often referred to as quality system) is the principal methodology
used by organizations to ensure that the products they develop have the desired quality.

o A quality system is the responsibility of the organization as a whole.

o However, every organization has a separate quality department to perform several quality system
activities.

o The quality system of an organization should have the full support of the top management.

o Without support for the quality system at a high level in a company, few members of staff will take
the quality system seriously.

Quality System Activities:

o The quality system activities encompass the following:
o Auditing of projects to check if the processes are being followed.
o Collect process and product metrics and analyze them to check if quality goals are being met.
o Review of the quality system to make it more effective.
o Development of standards, procedures, and guidelines.
o Produce reports for the top management summarizing the effectiveness of the quality system in
the organization.
¢ Agood guality system must be well documented.
o Without a properly documented quality system, the application of quality controls and procedures
become ad hoc, resulting in large variations in the quality of the products delivered.
o 1SO 9000 provides guidance on how to organize a quality system.

Evolution of Quality Systems:

o Quality systems have rapidly evolved over the last six decades.
o Prior to World War 11, the usual method to produce quality products was to inspect the finished
products to eliminate defective products.
o For example, a company manufacturing nuts and bolts would inspect its finished goods and
would reject those nuts and bolts that are outside a certain specified tolerance range.
o Since that time, quality systems of organizations have undergone four stages of evolution as shown
in figure.

' Quality assurance method ' Quality paradigm

' Inspection - Product assurance
e
: Quality control (QC)

: \J
' Quality assurance (QA)

. ;
Total quality management (TQM): Process assurance

The initial product inspection method gave way to quality control (QC) principles.

o Quality control (QC) focuses not only on detecting the defective products and eliminating them,
but also on determining the causes behind the defects, so that the product rejection rate can be
reduced.

The next breakthrough in quality systems was the development of the quality assurance (QA)
principles.

o The basic premise of modern quality assurance is that if an organization’s processes are good
and are followed rigorously, then the products are bound to be of good quality.

The modern quality assurance paradigm includes guidance for recognising, defining, analyzing, and
improving the production process.

o Total quality management (TQM) advocates that the process followed by an
organization must continuously be improved through process measurements.

o TQM goes a step further than quality assurance and aims at continuous process
improvement.

o TQM goes beyond documenting processes to optimize them through redesign.

Product metrics vs Process metrics:

All modern quality systems lay emphasis on collection of certain product and process metrics during
product development.

Product metrics help measure the characteristics of a product being developed, whereas process
metrics help measure how a process is performing.

Examples of product metrics are LOC and function point to measure size, PM (person- month) to
measure the effort required to develop it, months to measure the time required to develop the product,
time complexity of the algorithms, etc.

Examples of process metrics are review effectiveness, average number of defects found per hour of
inspection, average defect correction time, productivity, average number of failures detected during
testing per LOC, number of latent defects per line of code in the developed product.

SEI Capability Maturity Model

The Software Engineering Institute (SEI) Capability Maturity Model (CMM) specifies an
increasing series of levels of a software development organization. The higher the level, the better the
software development process, hence reaching each level is an expensive and time-consuming process.

Levels of CMM

(5) Optimization

Defect Prevention
Test Process Optimization
Quality Control

(4) Measured

Test Measurement
So ftware Quality Evaluation
Advanced Peer Reviews

(3) Defined

Test Organization
Test Lifecycle and Integration
Non-functional Testing

(2) Managed

TestPlanning
Test Monitoring and Control

/— Test Environment
(1) Initial

o Level One :Initial - The software process is characterized as inconsistent, and occasionally even
chaotic. Defined processes and standard practices that exist are abandoned during a crisis.
Success of the organization majorly depends on an individual effort, talent, and heroics. The
heroes eventually move on to other organizations taking their wealth of knowledge or lessons
learnt with them.

e Level Two: Repeatable - This level of Software Development Organization has a basic and
consistent project management processes to track cost, schedule, and functionality. The process is
in place to repeat the earlier successes on projects with similar applications. Program
management is a key characteristic of a level two organization.

o Level Three: Defined - The software process for both management and engineering activities are
documented, standardized, and integrated into a standard software process for the entire
organization and all projects across the organization use an approved, tailored version of the
organization's standard software process for developing,testing and maintaining the application.

e Level Four: Managed - Management can effectively control the software development effort
using precise measurements. At this level, organization set a quantitative quality goal for both
software process and software maintenance. At this maturity level, the performance of processes
is controlled using statistical and other quantitative techniques, and is quantitatively predictable.

e Level Five: Optimizing - The Key characteristic of this level is focusing on continually
improving process performance through both incremental and innovative technological
improvements. At this level, changes to the process are to improve the process performance and
at the same time maintaining statistical probability to achieve the established gquantitative
process-improvement objectives.

Personal Software Process (PSP)

The SEI CMM which is reference model for raising the maturity levels of software and predicts
the most expected outcome from the next project undertaken by the organizations does not tell software
developers about how to analyze, design, code, test and document the software products, but expects that
the developers use effectual practices. The Personal Software Process realized that the process of
individual use is completely different from that required by the team. Personal Software Process (PSP) is
the skeleton or the structure that assist the engineers in finding a way to measure and improve the way of
working to a great extend. It helps them in developing their respective skills at a personal level and the
way of doing planning, estimations against the plans.

Objectives of PSP :

The aim of PSP is to give software engineers with the regulated methods for the betterment of personal
software development processes. The PSP helps software engineers to:

e Improve their approximating and planning skills.

o Make promises that can be fulfilled.

e Manage the standards of their projects.

e Reduce the number of faults and imperfections in their work.

Time measurement:

Personal Software Process recommend that the developers should structure the way to spend the time.
The developer must measure and count the time they spend on different activities during the
development.

PSP model defines 5 framework activities:
Planning
High Level Design

1
2
3. High Level Design Review
4. Development

5

Postmortem

Planning: The engineers should plan the project before developing because without planning a high
effort may be wasted on unimportant activities which may lead to a poor and unsatisfactory quality of the
result. Here the development tasks are identified, and project scheduling takes place.

High level design: In this framework activity, external specification of each component is created, and
prototype are built.

High level design review: Verification process is applied to uncover the errors in the design.
Development: Here the code is generated, reviewed, compiled and tested.

Postmortem: Here the effectiveness of the process is defined.

Levels of Personal Software Process:

Personal Software Process (PSP) has four levels-

1. PSP 0 - The first level of Personal Software Process, PSP 0 includes Personal measurement, basic
size measures, coding standards.

2. PSP 1 - This level includes the planning of time and scheduling.
3. PSP 2 - This level introduces the personal quality management, design and code reviews.

4. PSP 3 - The last level of the Personal Software Process is for the personal process evolution.

	Contents:
	Introduction:
	Coding:
	What is the difference between a coding guideline and a coding standard?
	Coding Standards and Guidelines:
	Representative coding standards:
	Representative coding guidelines:

	Code Review:
	Code inspection.
	Code walkthrough.

	Software Documentation:
	Internal documentation:
	External documentation:
	Testing terminology:
	Validation vs Verification:
	● Verification:
	● Validation:
	How to test a Program:
	Testing Activities:

	Unit Testing
	Black-Box testing:
	Equivalence class partitioning:
	Boundary Value Analysis:
	Summary of the Black-box Test Suite Design Approach:

	White-Box Testing:
	Basic Concepts:
	Coverage-Based testing strategies:
	2. Branch Coverage:
	3. Multiple Condition Coverage:
	4. Path Coverage:
	Control flow graph (CFG):
	Path:
	Linearly independent set of paths (or basis path set):
	McCabe’s Cyclomatic Complexity Metric:
	1. Method 1:
	2. Method 2:
	3. Method 3:
	Steps to carry out path coverage-based testing:
	5. Data Flow-based testing:
	Fault-based Testing strategies:

	Debugging:
	Debugging Approaches:
	2. Backtracking:
	3. Cause elimination method:
	4. Program slicing:
	Debugging guidelines:

	Integration Testing:
	1. Big-bang approach to integration testing:
	2. Bottom-up approach to integration testing:
	3. Top-down approach to integration testing:
	4. Mixed approach to integration testing:

	System Testing
	Smoke Testing
	Performance Testing:
	1. Stress testing:
	2. Volume testing:
	3. Configuration testing:
	4. Compatibility testing ;
	5. Regression testing:
	6. Recovery testing:
	7. Maintenance testing:
	8. Security testing:

	Contents:
	Software Reliability:
	Hardware Reliability vs Software Reliability:
	Reliability Metrics for Software Products:
	1. Rate of occurrence of failure (ROCOF):
	2. Mean time to failure (MTTF):
	3. Mean time to repair (MTTR):
	4. Mean time between failure (MTBF):
	5. Probability of failure on demand (POFOD):
	6. Availability:
	Shortcomings of reliability metrics of software products:

	Statistical testing:
	Steps in statistical testing:

	Software Quality
	McCall’s quality factors:
	Software Quality Management System:
	Quality System Activities:
	Evolution of Quality Systems:
	Product metrics vs Process metrics:

