
Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 1

Internet of Things

Unit I

History of IoT

• 1970- The actual idea of connected devices was proposed

• 1990- John Romkey created a toaster which could be turned on/off over the Internet

• 1995- Siemens introduced the first cellular module built for M2M

• 1999- The term “Internet of Things” was used by Kevin Ashton during his work at P&G

which became widely accepted

• 2004 – The term was mentioned in famous publications like the Guardian, Boston Globe,

and Scientific American

• 2005-UN’s International Telecommunications Union (ITU) published its first report on

this topic.

• 2008- The Internet of Things was born

• 2011- Gartner, the market research company, include “The Internet of Things”

technology in their research

IoT working: The entire IoT process starts with the devices themselves like smartphones,

smart watches, electronic appliances like TV, Washing Machine which helps to communicate

with the IoT platform.

Four fundamental components of an IoT system:

1) Sensors/Devices: Sensors or devices are a key component that helps to collect live data

from the surrounding environment. All this data may have various levels of complexities. It

could be a simple temperature monitoring sensor, or it may be in the form of the video feed.

A device may have various types of sensors which performs multiple tasks apart from

sensing. Example, A mobile phone is a device which has multiple sensors like GPS, camera

but smartphone is not able to sense these things.

2) Connectivity: All the collected data is sent to a cloud infrastructure. The sensors should be

connected to the cloud using various mediums of communications. These communication

mediums include mobile or satellite networks, Bluetooth, WI-FI, WAN, etc.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 2

3) Data Processing: Once that data is collected and it gets to the cloud, the software

performs processing on the gathered data. This process can be just checking the temperature,

reading on devices like AC or heaters. However, it can sometimes also be very complex like

identifying objects, using computer vision on video.

4) User Interface: The information needs to be available to the end-user in some way which

can be achieved by triggering alarms on their phones or sending them notification through

email or text message. The user sometimes might need an interface which actively checks

their IoT system. For example, the user has a camera installed in his home. He wants to

access video recording and all the feeds with the help of a web server.

However, it’s not always one-way communication. Depending on the IoT application and

complexity of the system, the user may also be able to perform an action which may create

cascading effects.

For example, if a user detects any changes in the temperature of the refrigerator, with the help

of IoT technology the user should able to adjust the temperature with the help of their mobile

phone.

IoT Applications

IoT solutions are widely used in numerous companies across industries. Some most common

IoT applications are given below:

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 3

Application type Description

Smart

Thermostats
Helps to save resource on heating bills by knowing the usage patterns.

Connected Cars
IoT helps automobile companies handle billing, parking, insurance and other

related stuff automatically.

Activity Trackers
Helps to capture heart rate pattern, calorie expenditure, activity levels, and

skin temperature on wrist of the human body.

Smart Outlets
Remotely turn any device on or off. It also allows tracking a device’s energy

level and getting custom notifications directly into smartphone.

Parking Sensors
IoT technology helps users to identify the real-time availability of parking

spaces on their phone.

Connect Health

The concept of a connected health care system facilitates real-time health

monitoring and patient care. It helps in improved medical decision-making

based on patient data.

Smart City
Smart city offers all types of use cases which include traffic management to

water distribution, waste management, etc.

Smart home
Smart home encapsulates the connectivity inside the homes. It includes

smoke detectors, home appliances, light bulbs, windows, door locks, etc.

Smart supply

chain

Helps in real time tracking of goods while they are on the road, or getting

suppliers to exchange inventory information.

IoT Protocols

Introduction

The IoT system can function and transfer information only when devices are online and

safely connected to a communications network. IoT devices can be connected either using an

IP or a non-IP network. IP network connections are relatively complex and require increased

memory and power from IoT devices, although range is not a problem. On the other hand,

non-IP networks demand relatively less power and memory but have a range limitation.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 4

IoT protocol architecture

IoT architecture depends on its functionality and implementation in different sectors. The

basic process flow, on which IoT is built, has two important architectures — the 3-layer

architecture and 5-layer architecture.

3-layer IoT architecture: The 3-layer architecture is the most basic one. It comprises three

layers, namely, the perception, network and application layers.

• The perception layer is the physical layer, which includes all the smart sensor-based

devices that collect the data from the environment.

• The network layer includes all the wireless and the wired communication

technologies, and is responsible for providing connections between the devices and

the applications of the IoT ecosystem. The data is then passed on to the application

layer.

• The application layer is accountable for delivering application-specific services to the

user. It defines various applications in which IoT can be deployed, like smart homes,

cities, and health.

5-layer IoT architecture: The 5-layer architecture is an extension of the three-layer

architecture with the addition of two more layers – the processing and business layers. The

perception and application layers work in a similar manner as in the 3-layer architecture.

• The transport layer carries the sensor data from the perception to the processing layer

and vice versa using networks such as wireless, Bluetooth, 3G, RFID, and NFC.

• The processing layer or middleware layer stores, analyses, and processes large

amounts of data that come from the transport layer, utilising many technologies such

as databases, cloud computing, and Big Data processing modules.

• The business layer manages the whole IoT system, including applications, businesses,

and user privacy.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 5

IoT architecture

Types of IoT connections

An IoT system has four types of transmission channels for data communication.

Device-to-device (D2D) communication allows the devices located in close proximity to

communicate with each other using Bluetooth, ZigBee, or Z-Wave protocols. To establish a

connection without a network is possible through a D2D connection.

Types of IoT connections

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 6

Device-to-gateway communication connects devices using an intermediary platform.

Gateways serve two main functions – first, to consolidate data from sensors and route it to the

relevant data system, and second, to analyse data and if any problems are found, return it

back to the device.

Gateway-to-data systems communication is the data transmission from a gateway to the

appropriate data system.

Communication between data systems is within data centres or clouds. For this type of

connection, protocols should be easy to deploy and integrate with existing apps. They should

have high availability, capacity, and reliable disaster recovery.

MQTT publish/subscribe architecture

Types of IoT protocols

Network layer protocols: IoT network protocols connect medium to high power devices over

the network. End-to-end data communication within the network is allowed using this

protocol. HTTP, LoRaWAN, Bluetooth, Zigbee are a few popular IoT network protocols.

IoT data protocols: IoT data protocols connect low power IoT devices. Without any Internet

connection, these protocols can provide end-to-end communication with the hardware.

Connectivity in IoT data protocols can be done via a wired or cellular network. MQTT,

CoAP, AMQP, XMPP, DDS are some popular IoT data protocols.

IoT protocols and network standards

There are many IoT protocols available for different applications and requirements. However,

each has its own advantages and disadvantages for different IoT scenarios. Some of the most

widely used IoT protocols are discussed here.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 7

Message queue telemetry transport (MQTT) protocol

This open source publish/subscribe messaging transport protocol is very lightweight and

ideal for connecting small devices to constrained networks. It was designed to work in low-

bandwidth conditions, such as sensors and mobile devices, on unreliable networks. This

capability makes it the most preferred protocol for connecting devices with small code

footprint, as well as for wireless networks with varying levels of latency due to bandwidth

constraints or unreliable connections. It works on top of transmission control

protocol/Internet protocol (TCP/IP) to provide reliable delivery of data. MQTT has three

main components:

• Subscriber

• Publisher

• Broker

The basic workflow of this protocol involves the publisher being responsible for generating

and transmitting information to subscribers through a broker. The main function of the broker

is to ensure security by checking the authorisation of subscribers and publishers. This

protocol is preferred for IoT devices because it provides well-organised information routing

functions to small, cheap, low memory, power devices and low bandwidth networks. To

ensure message reliability, MQTT uses three levels of quality of service (QoS).

• QoS0 (At most once): This is the least reliable but the quickest mode. The message is

sent without any confirmation received.

• QoS1 (At least once): Ensures that the message is delivered at least once, even if

duplicate messages may be received.

• QoS2 (Exactly once): This is the most reliable but also the most bandwidth-

consuming mode. Duplicate messages are controlled to ensure that it gets delivered

only once.

MQTT is a bi-directional communication protocol, where the clients can produce and

consume data by publishing messages and subscribing to topics. Two-way communication

enables IoT devices to send sensor data and simultaneously receive configuration information

and control commands. Through MQTT, encrypting messages using TLS and verifying

clients using modern authentication protocols becomes much easier.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 8

CoAP message flows

Constrained application protocol (CoAP)

CoAP is a Web transfer protocol for constrained devices and networks in IoT. It can be

implemented over a user datagram protocol (UDP), and is designed for applications with

limited capacity to connect using light-weight machine-to-machine (LWM2M)

communication — such as smart energy and building automation. LWM2M allows remote

management of IoT devices, and provides interfaces to securely monitor and regulate them.

CoAP architecture is based on the famous REST model. The architecture of CoAP is divided

into two main categories: messaging, which is responsible for the reliability and duplication

of messages; and request/ response, which is responsible for communication.

The message layer is on top of the UDP, and is responsible for exchanging messages between

the IoT devices and Internet. CoAP has four different types of messages — confirmable, non-

confirmable, acknowledgment and reset. A confirmable message (CON) is a reliable message

when exchanged between two endpoints. It is sent over and over again until the other end

sends an acknowledge message (ACK). The ACK message has the same message ID as that

of a CON. If the server faces issues managing the incoming request, it can send back a reset

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 9

message (RST) instead of an ACK. For exchanging non-critical messages, unreliable NON

messages can be used, where the server does not acknowledge the message. NON messages

are assigned message IDs to detect duplicate messages.

Request/response is the second layer of the CoAP abstraction layer, which uses CON or NON

messages to send requests. The request and the response both have the same token, different

from the message ID. Once the response is ready, a new CON message containing the

response is sent back to the client and the client acknowledges the response received.

Advanced message queuing protocol (AMQP)

AMQP is an open standard application layer protocol designed for higher security, reliability,

easy provisioning, and interoperability. It is a connection-oriented protocol, which means the

client and the broker need to establish a connection before they transfer data because TCP is

used as a transport protocol. AMQP offers two levels of QoS for reliable message delivery —

unsettle format (similar to MQTT QoS0) and settle format (similar to MQTT QoS1). In

AMQP, the broker is divided into two main components — exchange and queues. Exchange

is responsible for receiving publisher messages and sending them to queues. Subscribers

connect to those queues, which basically represent the topics, and receive the sensory data

whenever they are available.

AMQP architecture

Data Distribution Service (DDS)

DDS is a middleware protocol for data-centric connectivity from the object

management group, which provides low-latency, data connectivity, extreme reliability, and a

scalable architecture for business and mission-critical IoT applications. This protocol

supports multicasting techniques in data transmission and high-quality QoS in small memory

https://www.opensourceforu.com/wp-content/uploads/2022/01/Figure-6-AMQP-architecture.jpg

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 10

footprint devices and applications. The messaging model in DDS consists of two interface

layers — data-centric, publish-subscribe (DCPS) and data local, reconstruction layer

(DLRL). The DCPS layer is responsible for binding the values of data objects within an

application during the publish/subscribe process.

Features CoAP MQTT AMQP DDS

Messaging pattern
request/

response

publish-

subscribe

request/response;

publish-subscribe

publish-

subscribe

Architecture tree tree star bus

Transport UDP
TCP, MQTT-S:

UDP
TCP

UDP or

TCP

Network layer IPv6 IPv4 or IPv6 IPv4 or IPv6 IPv6

QoS level 2 levels 3 levels 3 levels 23 levels

Communication

scope

Device-to-

device

Device-to-cloud Device-to-device,

Device-to-cloud,

Cloud-to-cloud

Device-to-

device,

Device-to-

cloud,

Cloud-to-

cloud

Addressing URI topic only queue, topic/Routing

Key

topic/key

Security DTLS, IPsec TLS SASL/TLS TLS,

DTLS,

DDS

security

Interoperability Semantic Foundational Structural Semantic

[Broker/server]

implementation

language

Java, C, C#,

C++,

Erlang, Go,

Python,

JavaScript,

Java, C, C#,

C++,

JavaScript,

Erlang, Go,

Lua, Python

Java, C, C#, C++,

Python, Ruby

Ada, Java,

C, C#,

C++,

Python,

Scala, Lua,

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 11

Ruby, Rust,

Swift

Pharo,

Ruby

Header size 4 bytes 2 bytes 8 bytes 16 bytes

Governing body IETF OASIS OASIS OMG

Table 1: A comparative analysis of IoT protocols

There are two main constructs in DCPS — publisher with DataWriter and subscriber with

DataReader. A publisher uses the DataWriter to bind values of data objects for each defined

data type. It is responsible for data distribution while adhering to the QoS policies, if any. An

application uses a DataReader attached to a subscriber to retrieve the data from the latte. It

subscribes to data described by a DataReader, which is provided by a known subscriber.

Publishing and

subscribing to data

objects is done by

using topics. DDS

provides 23 different

QoS levels with

features such as

security, durability,

reliability, and many

others.

DDS data-centric model

Real time Examples of IoT

Medical: IoT devices can be used for

medical data collection, monitoring and

analysis. Sometimes referred to as smart

healthcare, the internet of medical things aims

to create a digitized healthcare system that

connects medical resources and healthcare

services.

Some examples IoT applications in this field

include:

https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Smart-healthcare-in-the-IoT-era
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Smart-healthcare-in-the-IoT-era

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 12

• Heart rate monitors and pacemakers that monitor a patient's vital functions and can

send alerts through an emergency notification system.

• Advanced hearing aids that adjust their level of sensitivity to suit the user.

• Fitbit or smart watches that measure biometrics.

• Smart beds that sense when a patient is moving to alert a healthcare professional or

automatically adjust settings to improve comfort.

• End-to-end health monitoring applications that help patients -- with chronic illnesses,

in particular -- monitor their vitals and medication requirements.

Military: The military uses smart technology and IoT to prepare for warfare and to conduct

surveillance and reconnaissance. Examples include smart drones and the DARPA (Defense

Advanced Research Projects Agency) Ocean of Things project, which aims to establish a

network of passive sensors at sea to record the presence and activity of military and

commercial vessels.

Manufacturing: IoT in the industrial and manufacturing sector aids in various sensing,

identification, processing and communication processes in the factory and elsewhere. For

example, digital control systems can automate these processes and help optimize plant safety,

security and efficiency.

Retail: Retailers and distributors use smart packaging with a QR code or NFC tag that

contains a unique identifier with digital information about products to enable digital

interactions. Similar technology has been used during the COVID-19 pandemic to enable

contactless interaction with publicly used objects, such as restaurant menus or smart water

fountains.

Infrastructure: IoT devices can be used to improve public infrastructure. Some examples

include:

• Transportation. Smart traffic control systems, smart parking systems, electronic toll

collection systems and vehicle road assistance help make transportation more

efficient.

• Home and building automation. Smart energy management systems monitor and

control various infrastructural components.

https://internetofthingsagenda.techtarget.com/definition/smartwatch
https://www.techtarget.com/searchsecurity/definition/biometrics
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/COVID-19-makes-IoT-a-must-have
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/COVID-19-makes-IoT-a-must-have

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 13

• Infrastructure monitoring. IoT devices can monitor infrastructure like bridges or

railway tracks to detect significant structural changes to improve emergency

management and incident response processes.

• Urban development. Smart cities outfitted with IoT sensors provide citizens with

services like environmental monitoring data and parking applications for their

smartphones by way of smart meters.

• Agriculture. IoT is used in farming to monitor and collect agricultural data such as

rainfall level, temperature, wind speed, pest infestation and soil content. Farmers can

use the insights from IoT devices in their fields to improve the quality of their product

and minimize waste.

Advantages of IoT

Key benefits of IoT technology are as follows:

• Technical Optimization: IoT technology helps a lot in improving technologies and

making them better. Example, with IoT, a manufacturer is able to collect data from

various car sensors. The manufacturer analyzes them to improve its design and make

them more efficient.

• Improved Data Collection: Traditional data collection has its limitations and its design

for passive use. IoT facilitates immediate action on data.

• Reduced Waste: IoT offers real-time information leading to effective decision making &

management of resources. For example, if a manufacturer finds an issue in multiple car

engines, he can track the manufacturing plan of those engines and solves this issue with

the manufacturing belt.

• Improved Customer Engagement: IoT allows you to improve customer experience by

detecting problems and improving the process.

https://internetofthingsagenda.techtarget.com/answer/What-are-the-advantages-of-a-smart-irrigation-system

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 14

Disadvantages IoT

Now, let’s see some of the disadvantages of IoT:

Security: IoT technology creates an ecosystem of connected devices. However, during this

process, the system may offer little authentication control despite sufficient security

measures.

• Privacy: The use of IoT, exposes a substantial amount of personal data, in extreme detail,

without the user’s active participation. This creates lots of privacy issues.

• Flexibility: There is a huge concern regarding the flexibility of an IoT system. It is

mainly regarding integrating with another system as there are many diverse systems

involved in the process.

• Complexity: The design of the IoT system is also quite complicated. Moreover, it’s

deployment and maintenance also not very easy.

• Compliance: IoT has its own set of rules and regulations. However, because of its

complexity, the task of compliance is quite challenging.

Challenges of IoT technology

Despite its potential, IoT faces several challenges, including:

IoT security: IoT devices are meant to automate processes, and so humans don't interact with

them as frequently as consumer devices like smartphones (itself a type of IoT device). For

example, an administrator of an IoT device like a smart camera is more likely to neglect to

change the default password set by the manufacturer. The result is an external-facing IoT

device with a simple default password to crack.

Data privacy: There are also concerns about the data rights and privacy of consumer data as

IoT becomes more prevalent. With more networked devices sharing data autonomously,

being accountable for all that data becomes difficult; for example, billboards with hidden

cameras that track demographic information of passers-by who stop to read it (without their

knowledge or consent), and securing patient data smart medical devices collect in and out of

the hospital.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 15

Safety: IoT devices -- especially those used in industrial, medical, transportation and

infrastructural applications -- are often tasked with jobs that, if performed incorrectly, could

put lives at risk. If a smart car's warning system malfunctions, it could cause the driver to

neglect an obstacle or pedestrian. A malfunctioning sensor at an industrial plant can be

catastrophic if a key warning sign is missed.

Interoperability: Many IoT devices have unique or niche protocols or proprietary services

that they run on, and can't interact with other devices or services without considerable

tweaking. There is also no universal standard set of terminology for talking about IoT, or a

common set of regulations for when these devices see widespread adoption in the public

sphere.

Environmental impact: Heavy metals used in many of IoT devices make it difficult to

manufacture, dispose and recycle them without substantial environmental and human costs.

Paired with this concern is how some IoT vendors intentionally brick (render useless) their

products by disabling proprietary services that their devices need to run.

IoT - Platform

All the IoT devices are connected to other IoT devices and application to transmit and

receive information using protocols. There is a gap between the IoT device and IoT

application. An IoT Platform fills the gap between the devices (sensors) and application

(network). IoT platform is an integrated service that fulfils the gap between the IoT

device and application and offers you to bring physical object online.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 16

There are several IoT Platforms available that provides facility to deploy IoT application

actively. Some of them are listed below:

Amazon Web Services (AWS) IoT platform: Amazon Web Service IoT platform offers a

set of services that connect to several devices and maintain the security as well. This platform

collects data from connected devices and performs real-time actions.

Microsoft Azure IoT platform: Microsoft Azure IoT platform offers strong security

mechanism, scalability and easy integration with systems. It uses standard protocols that

support bi-directional communication between connected devices and platform. Azure IoT

platform has an Azure Stream Analytics that processes a large amount of information in real-

time generated by sensors. Some common features provided by this platform are:

o Information monitoring

o A rules engine

o Device shadowing

o Identity registry

Google Cloud Platform IoT: Google Cloud Platform is a global cloud platform that

provides a solution for IoT devices and applications. It handles a large amount of data using

Cloud IoT Core by connecting various devices. It allows to apply BigQuery analysis or to

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 17

apply Machine learning on this data. Some of the features provided by Google Cloud IoT

Platform are:

o Cloud IoT Core

o Speed up IoT devices

o Cloud publisher-subscriber

o Cloud Machine Learning Engine

IBM Watson IoT platform: The IBM Watson IoT platform enables the developer to deploy

the application and building IoT solutions quickly. This platform provides the following

services:

o Real-time data exchange

o Device management

o Secure Communication

o Data sensor and weather data services

Artik Cloud IoT platform: Arthik cloud IoT platform is developed by Samsung to enable

devices to connect to cloud services. It has a set of services that continuously connect devices

to the cloud and start gathering data. It stores the incoming data from connected devices and

combines this information. This platform contains a set of connectors that connect to third-

party services.

Bosch IoT Suite:

Bosch cloud IoT Suit is based on Germany. It offers safe and reliable storing of data on its

server in Germany. This platform supports full app development from prototype to

application development.

Needs of IoT platform:

o IoT Platform connects sensors and devices.

o IoT platform handles different software communication protocol and hardware.

o IoT platform provides security and authentication for sensors and users.

o It collects, visualizes, and analyzes the data gathered by the sensor and device.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 18

IoT Data Link Communication Protocol

The IoT Data Link communication protocol provides service to the Network Layer. There are

various protocols and standard technologies specified by the different organization for data

link protocols.

Bluetooth:

Bluetooth is a short-range wireless communication network over a radio frequency. Bluetooth

is mostly integrated into smartphones and mobile devices. The Bluetooth communication

network works within 2.4 ISM band frequencies with data rate up to 3Mbps.

There are three categories of Bluetooth technology:

1. Bluetooth Classic

2. Bluetooth Low Energy

3. Bluetooth SmartReady

The features of Bluetooth 5.0 version is introduced as Bluetooth 5 which have been

developed entirely for the Internet of Things.

Properties of Bluetooth network

o Standard: Bluetooth 4.2

o Frequency: 2.4GHz

o Range: 50-150m

o Data transfer rates: 3Mbps

Advantages of Bluetooth network

o It is wireless.

o It is cheap.

o It is easy to install.

o It is free to use if the device is installed with it.

Disadvantages of Bluetooth network

o It is a short-range communication network.

o It connects only two devices at a time.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 19

Bluetooth Low Energy

Bluetooth low energy (BLE) is a

short-range communication network

protocol with PHY (physical layer)

and MAC (Medium Access Control)

layer. It is designed for low-power

devices which uses less data. BLE

always remain in sleep mode except

when the connection between devices

is initiated and data transmission

occurs, due to this it conserves power

of the device. Bluetooth low energy

follows the master/slave architecture and offers two types of frames that are adverting and

data frames. Slave node sent the advertising frame to discover one or more dedicated

advertisement channels. Master nodes sense this advertisement channels to find slaves and

connect them.

Z-Wave

Z-Wave is a wireless communication protocol with the frequency of 900MHz. The ranges of

Z-Wave lies between 30 meters to 100 meters with the data transfer rate of 100kbps so that it

is suitable for small messages in IoT applications for home automation. This communication

protocol operates on mesh network architecture with one and several secondary controllers.

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 20

Properties of Z-Wave protocol

o Standard: Z-Wave Alliance ZAD12837 / ITU-T G.9959

o Frequency: 908.42GHz

o Range: 30-100m

o Data transfer rate: 100kbps

Advantages of Z-Wave protocol

o Low power consumption

o Remote or local control

o Simple installation

o Interoperability

Application of Z-Wave protocol

o Smart product and IoT based application

o Energy saving

o Home security

ZigBee Smart Energy

ZigBee is a low power, low data rate wireless personal area network communication

protocol. It is mostly used in home automation and industrial settings. Since ZigBee is a low

power communication protocol, the IoT power devices used with ZigBee technology. The

ZigBee communication protocol is based on the IEEE 802.15.4 standard operating at the

2.4GHz frequency. The ZigBee protocol supports star, cluster or wireless mesh technology

topology.

ZigBee uses the following devices in its network:

o Zigbee Coordinator

o Zigbee End Device

o Zigbee Router

Properties of ZigBee protocol

o Standard: ZigBee 3.0 based on IEEE802.15.4

Internet of Things Unit I

Dept. of Electronics, G. V. N College, KVP Page 21

o Frequency: 2.4GHz

o Range: 10-100m

o Data transfer rate: 250kbps

Advantages of ZigBee protocol

o Wireless

o Mesh networking

o Direct communication

o Low power consumption

Disadvantages of ZigBee protocol

o Costly

o Works with low speed within a small distance

Application of ZigBee protocol

o Commercial and residential control

o Personal and healthcare

o Home networking

o Industrial control and management

o Consumer electronics

LoRaWAN

LoRaWAN refers to Long Rage Wide Area Network which is a wide area network

protocol. It is an optimized low-power consumption protocol design to support large-scale

public networks with millions of low-power devices. A single operator operates the

LoRaWAN. The LoRaWAN network is a bi-directional communication for IoT application

with low cost, mobility, and security.

Properties of LoRaWAN protocol

o Standard: LoRaWAN

o Frequency: Various

o Range: 2-5km (urban environment), 15km (suburban environment)

o Data Rates: 0.3-50 kbps.

Unit II - Arduino

Introduction:

Arduino is a project, open-source hardware, and

software platform used to design and build

electronic devices. It designs and manufactures

microcontroller kits and single-board interfaces

for building electronics projects.

The Arduino board consists of sets of analog and

digital I/O (Input / Output) pins, which are

further interfaced to breadboard, expansion

boards, and other circuits. Universal Serial Bus

(USB), and serial communication interfaces are used for loading programs

from the computers.

Arduino Definition:

 The Arduino is a single circuit board, which consists of different

interfaces or parts. The board consists of the set of digital and analog pins

that are used to connect various devices and components, which want to use

for the functioning of the electronic devices. Most of the Arduino consists of

14 digital I/O pins.

Features

The features of Arduino are listed below:

✓ Arduino programming is a simplified version of C++, which makes the

learning process easy.

✓ The Arduino IDE is used to control the functions of boards. It further sends

the set of specifications to the microcontroller.

✓ Arduino does not need an extra board or piece to load new code.

✓ Arduino can read analog and digital input signals.

✓ The hardware and software platform is easy to use and implement.

Microcontroller

The most essential part of the Arduino is the

Microcontroller.Microcontroller is small and low

power computer. Most of the microcontrollers have a

RAM (Random Access Memory), CPU (Central

Processing Unit), and memory storage like other computer systems.

o It has very small memory of 2KB (two Kilobytes). Due to less memory, some

microcontrollers are capable of running only one program at a time.

o It is a single chip that includes memory, Input/Output (I/O) peripherals,

and a processor.

o The GPIO (General Purpose Input Output) pins present on the chip help us

to control other electronics or circuitry from the program.

Arduino IDE

The Arduino IDE is open-source

software, which is used to write and

upload code to the Arduino boards.

The IDE application is suitable for

different operating systems such

as Windows, Mac OS X, and Linux.

It supports the programming

languages C and C++. Here, IDE

stands for Integrated Development

Environment.

The program or code written in the Arduino IDE is often called as sketching.

We need to connect the Arduino board with the IDE to upload the sketch

written in the Arduino

IDE software. The

sketch is saved with

the extension '.ino.'

The Arduino IDE will

appear as:

Toolbar Button

The icons displayed on

the toolbar are New,

Open, Save, Upload,

and Verify.

It is shown below:

Upload

The Upload button compiles and runs our code written on the screen. It

further uploads the code to the connected board. Before uploading the

sketch, make sure that the correct board and ports are selected.

If the uploading is failed, it will display the message in the error window.

A Bootloader is defined as a small program, which is loaded in the

microcontroller present on the board. The LED will blink on PIN 13.

Open: The Open button is used to open the already created file. The selected

file will be opened in the current window.

Save: The save button is used to save the current sketch or code.

New: It is used to create a new sketch or opens a new window.

Verify: The Verify button is used to check the compilation error of the sketch

or the written code.

Get Board Info: It gives the information about the selected board.

Programmer need to select the appropriate port before getting information

about the board.

Programmer: To select the hardware programmer while programming the

board. It is required when programmer are not using the onboard USB serial

connection. It is also required during the burning of the Bootloader.

Burn Bootloader: The Bootloader is present on the board onto the

microcontroller. The option is useful when we have purchased the

microcontroller without the bootloader. Before burning the bootloader, we

need to make sure about the correct selected board and port.

Arduino Boards

Arduino is an easy-to-use open platform to create electronics projects.

Arduino boards play a vital role in creating different projects. It makes

electronics accessible to non-engineers, hobbyists, etc.

The various components present on the Arduino boards

are Microcontroller, Digital Input/output pins, USB Interface and

Connector, Analog Pins, Reset Button, Power button, LED's, Crystal

Oscillator, and Voltage Regulator. Some components may differ depending

on the type of board.

Types of Arduino Boards

o Arduino UNO

Arduino UNO is based on an ATmega328P microcontroller. It is easy to use

compared to other boards, such as

the Arduino Mega board, etc. The

Arduino UNO includes 6 analog pin

inputs, 14 digital pins, a USB

connector, a power jack, and an

ICSP (In-Circuit Serial

Programming) header.

It is the most used and of standard

form from the list of all available

Arduino Boards. It is also

recommended for beginners as it is easy to use.

o Arduino Nano

The Arduino Nano is a small Arduino

board based on ATmega328P or

ATmega628 Microcontroller. The

connectivity is the same as the Arduino

UNO board.

The Nano board is defined as a sustainable, small, consistent, and flexible

microcontroller board. It is small in size compared to the UNO board. The

devices required to start our projects using the Arduino Nano board are

Arduino IDE and mini USB.

The Arduino Nano includes an I/O pin set of 14 digital pins and 8 analog

pins. It also includes 6 Power pins and 2 Reset pins.

o Arduino Mega

The Arduino Mega is based on

ATmega2560 Microcontroller. The

ATmega2560 is an 8-bit

microcontroller. We need a simple

USB cable to connect to the

computer and the AC to DC

adapter or battery to get started

with it. It has the advantage of

working with more memory space.

The Arduino Mega includes 54 I/O digital pins and 16 Analog Input/Output

(I/O), ICSP header, a reset button, 4 UART (Universal Asynchronous

Reciever/Transmitter) ports, USB connection, and a power jack.

o Arduino Micro

The Arduino Micro is based on the

ATmega32U4 Microcontroller. It

consists of 20 sets of pins. The 7

pins from the set are PWM (Pulse

Width Modulation) pins, while 12

pins are analog input pins. The

other components on board are reset button, 16MHz crystal oscillator, ICSP

header, and a micro USB connection.

o Arduino Bluetooth

The Arduino Bluetooth board is based on

ATmega168 Microcontroller. It is also named

as Arduino BT board. The components

present on the board are 16 digital pins, 6

analog pins, reset button, 16MHz crystal

oscillator, ICSP header, and screw terminals.

The screw terminals are used for power.

o Arduino Ethernet

The Arduino Ethernet is based on the

ATmega328 Microcontroller. The board

consists of 6 analog pins, 14 digital I/O

pins, crystal oscillator, reset button, ICSP

header, a power jack, and an RJ45

connection.

Arduino UNO

The Arduino UNO is a standard board of Arduino. Here UNO means 'one' in

Italian. It was named as UNO to label the first release of Arduino Software. It

was also the first USB board released by Arduino. It is considered as the

powerful board used in various projects. Arduino.cc developed the Arduino

UNO board.

Arduino UNO is based on an ATmega328P microcontroller. It is easy to use

compared to other boards, such as the Arduino Mega board, etc. The board

consists of digital and analog Input/Output pins (I/O), shields, and other

circuits.

The Arduino UNO includes 6 analog pin inputs, 14 digital pins,

a USB connector, a power jack, and an ICSP (In-Circuit Serial Programming)

header. It is programmed based on IDE, which stands for Integrated

Development Environment. It can run on both online and offline platforms.

The IDE is common to all available boards of Arduino.

The components of Arduino UNO board are shown below:

Let's discuss each component in detail.

o ATmega328 Microcontroller- It is a single chip Microcontroller of the

ATmel family. The processor code inside it is of 8-bit. It

combines Memory (SRAM, EEPROM, and Flash), Analog to Digital

Converter, SPI serial ports, I/O lines, registers, timer, external

and internal interrupts, and oscillator.

o ICSP pin - The In-Circuit Serial Programming pin allows the user to

program using the firmware of the Arduino board.

o Power LED Indicator- The ON status of LED shows the power is

activated. When the power is OFF, the LED will not light up.

o Digital I/O pins- The digital pins have the value HIGH or LOW. The

pins numbered from D0 to D13 are digital pins.

o TX and RX LED's- The successful flow of data is represented by the

lighting of these LED's.

o AREF- The Analog Reference (AREF) pin is used to feed a reference

voltage to the Arduino UNO board from the external power supply.

o Reset button- It is used to add a Reset button to the connection.

o USB- It allows the board to connect to the computer. It is essential for

the programming of the Arduino UNO board.

o Crystal Oscillator- The Crystal oscillator has a frequency of 16MHz,

which makes the Arduino UNO a powerful board.

o Voltage Regulator- The voltage regulator converts the input voltage to

5V.

o GND- Ground pins. The ground pin acts as a pin with zero voltage.

o Vin- It is the input voltage.

o Analog Pins- The pins numbered from A0 to A5 are analog pins. The

function of Analog pins is to read the analog sensor used in the

connection. It can also act as GPIO (General Purpose Input Output)

pins.

Technical Specifications of Arduino UNO

The technical specifications of the Arduino UNO are listed below:

o There are 20 Input/Output pins present on the Arduino UNO board.

These 20 pins include 6 PWM pins, 6 analog pins, and 8 digital I/O

pins.

o The PWM pins are Pulse Width Modulation capable pins.

o The crystal oscillator present in Arduino UNO comes with a frequency

of 16MHz.

o It also has a Arduino integrated WiFi module. Such Arduino UNO

board is based on the Integrated WiFi ESP8266 Module and

ATmega328P microcontroller.

o The input voltage of the UNO board varies from 7V to 20V.

o Arduino UNO automatically draws power from the external power

supply. It can also draw power from the USB.

Arduino UNO Pinout

The Arduino UNO is a standard board of Arduino, which is based on

an ATmega328P microcontroller. It is easier to use than other types of

Arduino Boards.

The Arduino UNO Board, with the specification of pins, is shown below:

o ATmega328 Microcontroller- It is a single chip Microcontroller of the

ATmel family. The processor core inside it is of 8-bit. It is a low-cost,

low powered and a simple microcontroller. The Arduino UNO and Nano

models are based on the ATmega328 Microcontroller.

o Voltage Regulator: The voltage regulator converts the input voltage to

5V. The primary function of voltage regulator is to regulate the voltage

level in the Arduino board. For any changes in the input voltage of the

regulator, the output voltage is constant and steady.

o GND - Ground pins. The ground pins are used to ground the circuit.

o TXD and RXD: TXD and RXD pins are used for serial communication.

The TXD is used for transmitting the data, and RXD is used for

receiving the data. It also represents the successful flow of data.

o USB Interface: The USB Interface is used to plug-in the USB cable. It

allows the board to connect to the computer. It is essential for the

programming of the Arduino UNO board.

o RESET: It is used to add a Reset button to the connection.

o SCK: It stands for Serial Clock. These are the clock pulses, which are

used to synchronize the transmission of data.

o MISO: It stands for Master Input/ Slave Output. The save line in the

MISO pin is used to send the data to the master.

o VCC : It is the modulated DC supply voltage, which is used to regulate

the IC's used in the connection. It is also called as the primary voltage

for IC's present on the Arduino board.

o Crystal Oscillator: The Crystal oscillator has a frequency of 16MHz,

which makes the Arduino UNO a powerful board.

o ICSP : It stands for In-Circuit Serial Programming. The users can

program the Arduino board's firmware using the ICSP pins.

The program or firmware with the advanced functionalities is received by

microcontroller with the help of the ICSP header.

The ICSP header consists of 6 pins.

The structure of the ICSP header is shown below:

It is the top view of the ICSP header.

o SDA: It stands for Serial Data. It is

a line used by the slave and master

to send and receive data.

o SCL: It stands for Serial Clock. It is

defined as the line that carries the

clock data. It is used to synchronize

the transfer of data between the two

devices. The Serial Clock is

generated by the device and it is

called as master.

o SPI: It stands for Serial Peripheral Interface. It is popularly used by

the microcontrollers to communicate with one or more peripheral

devices quickly. It uses conductors for data receiving, data sending,

synchronization, and device selection (for communication).

o MOSI: It stands for Master Output/ Slave Input. The MOSI and SCK

are driven by the Master.

o SS: It stands for Slave Select. It is the Slave Select line, which is used

by the master. It acts as the enable line.

o I2C: It is the two-wire serial communication protocol. It stands for

Inter Integrated Circuits. The I2C is a serial communication protocol

that uses SCL (Serial Clock) and SDA (Serial Data) to receive and send

data between two devices. 3.3V and 5V are the operating voltages of

the board.

Arduino Coding Basics

 Arduino IDE (Integrated Development Environment) allows to draw the

sketch and upload it to the various Arduino boards using code. The code is

written in a simple programming language similar to C and C++.

The initial step to start with Arduino is the IDE download and installation.

Coding Screen

The coding screen is

divided into two blocks.

The setup is considered as the

preparation block, while

the loop is considered as the

execution block.

 The set of statements in

the setup and loop blocks are

enclosed with the curly

brackets. Programmer can

write multiple statements

depending on the coding

requirements for a particular

project.

For example:

1. void setup ()

2. {

3. Coding statement 1;

4. Coding statement 2;

5. .

6. .

7. .

8. Coding statement n;

9. }

10. void loop ()

11. {

12. Coding statement 1;

13. Coding statement 2;

14. .

15. .

16. .

17. Coding statement n;

18. }

Time in Arduino

The time in Arduino programming is measured in a millisecond.

Where, 1 sec = 1000 milliseconds

One can adjust the timing according to the milliseconds.

For example, for a 5-second delay, the time displayed will be 5000

milliseconds.

o The void setup () would include pinMode as the main function.

pinMode (): The specific pin number is set as the INPUT or OUTPUT in the

pinMode () function.

The Syntax is: pinMode (pin, mode)

Where,

pin: It is the pin number. We can select the pin number according to the

requirements.

Mode: We can set the mode as INPUT or OUTPUT according to the

corresponding pin number.

Let' understand the pinMode with an example.

Example: pinMode (12, OUTPUT);

digitalWrite(): The digitalWrite () function is used to set the value of a pin

as HIGH or LOW.

Where,

HIGH: It sets the value of the voltage. For the 5V board, it will set the value

of 5V, while for 3.3V, it will set the value of 3.3V.

LOW: It sets the value = 0 (GND).

The syntax is: digitalWrite(pin, value HIGH/LOW)

pin: specify the pin number or the declared variable.

Let's understand with an example.

Example:

1. digitalWrite (13, HIGH);

2. digitalWrite (13, LOW);

The HIGH will ON the LED and LOW will OFF the LED connected to pin

number 13.

difference between digitalRead () and digitalWrite ()

The digitalRead () function will read the HIGH/LOW value from the digital

pin, and the digitalWrite () function is used to set the HIGH/LOW value of

the digital pin.

delay ()

The delay () function is a blocking function to pause a program from doing a

task during the specified duration in milliseconds.

For example, - delay (2000)

Where, 1 sec = 1000millisecond

Hence, it will provide a delay of 2 seconds.

Example: To light the LED connected to pin number 13. We want to ON the

LED for 4 seconds and OFF the LED for 1.5 seconds.

Code:

1. void setup ()

2. {

3. pinMode (13, OUTPUT); // to set the OUTPUT mode of pin number 13.

4. }

5. void loop ()

6. {

7. digitalWrite (13, HIGH);

8. delay (4000); // 4 seconds = 4 x 1000 milliseconds

9. digitalWrite (13, LOW);

10. delay (1500); // 1.5 seconds = 1.5 x 1000 milliseconds

11. }

Blinking an LED

LED (Light Emitting Diode) is an electronic device, which emits light when

the current passes through its terminals. The LED will work as a simple

light that can be turned ON and OFF for a specified duration.

The structure clearly shows the pinout of the

UNO board. It also displays the LED and

resistance connected to the board. It is shown

below:

Open the IDE and start with the coding, which

is given below:

1. void setup ()

2. {

3. pinMode (8, OUTPUT);

// to set the OUTPUT mode of pin number 8.

4. }

5. void loop ()

6. {

7. digitalWrite (8, HIGH);

8. delay(1000); // 1 second = 1 x 1000 milliseconds

9. digitalWrite (8, LOW);

10. delay(500); // 0.5 second = 0.5 x 1000 milliseconds

11. }

Blinking Two LED

The concept of blinking two LED's

is similar to the blinking of a single

LED. The resistors reduce the

amount of current reaching the

LED, which saves the LED from

being burnt.

Here, The digital output pin number

13 and 7 are used. The positive

terminal of the red LED is

connected to the PIN 13, and the

negative terminal (anode) is

connected to the ground.

Similarly, the positive terminal

(cathode) of the green LED is connected to PIN 7 and the negative terminal is

connected to the ground.

Sketch

1. void setup ()

2. {

3. pinMode (13, OUTPUT); // to set the OUTPUT mode of pin number 13.

4. pinMode (7, OUTPUT); // to set the OUTPUT mode of pin number 7.

5. }

6. void loop ()

7. {

8. digitalWrite (13, HIGH);

9. digitalWrite (7, LOW);

10. delay(1500); // 1.5 second = 1.5 x 1000 milliseconds

11. digitalWrite (13, LOW);

12. digitalWrite (7, HIGH);

13. delay(1000); // 1 second = 1 x 1000 milliseconds

14. }

Click on the Verify button present on the toolbar to compile the code.

The RX and TX LED on the board will light up after the successful uploading

of the code.

o Connect the left leg of the resistor

(connected in series with red LED)

to the digital output pin of the UNO

board, i.e., PIN 13.

o Connect the left leg of the resistor

(connected in series

with green LED) to the digital

output pin of the UNO board, i.e.,

PIN 7.

o Connect the negative/shorter

terminal (Cathode) of the red and

green LED to the GND pin of the

UNO board using the wire.

Blinking various LEDs using Arrays

Five LEDs are connected to pins 13, 12, 8, 4, and 2 of the Arduino board.

The required resistance of the resistors is enough to light up an LED

without damaging the board and

other components.

o Connect the resistor of 220

Ohm in series with the five

LEDs. Now connect it to the

pin number 13, 12, 8, 4, and 2

of the Arduino board.

o Connect the negative terminal

of the five LEDs to the GND

(Ground).

Sketch

The code to light the five LEDs is

given below:

1. int timer = 500;

2. int LEDPins[] = {13, 12, 8, 4, 2}; // an array of declared pin numb

ers on the board

3. int countOFpin = 6; // the number of arrays

4. void setup()

5. {

6. // we have declared an array to intialize the LED pins as OUTPUT

7. for (int PIN = 0; PIN < countOFpin; PIN= PIN + 1)

8. {

9. pinMode(LEDPins[PIN], OUTPUT);

10. }

11. }

12. void loop()

13. {

14. // loop starting from the lowest pin in the array to the highest:

15. for (int PIN = 0; PIN < countOFpin; PIN++) {

16. // turns the pin ON:

17. digitalWrite(LEDPins[PIN], HIGH);

18. delay(timer);

19. // turnS the pin OFF:

20. digitalWrite(LEDPins[PIN], LOW);

21. }

22. // loop from the highest pin in the array to the lowest:

23. // It means the LEDs will light in the reverse direction as used

 above

24. for (int PIN = countOFpin - 1; PIN >= 0; PIN- -)

25. {

26. digitalWrite(LEDPins[PIN], HIGH);

27. delay(timer);

28. digitalWrite(LEDPins[PIN], LOW);

29. }

30. }

Arduino button

The buttons are similar to switches that create and break electrical

connections in the circuits. A single press turns the state ON, while another

press turns the state OFF. It means that the button connects the two points

in a circuit.

There are two types of button, which are

listed below:

o NO (Normally Open) : In this type,

the state of the button is in rest. It

means that a terminal in such a

condition is not connected. When

push the button, the terminals

become electrically connected.

o NC (Normally Closed) : It is defined

as the working state of the button. It

connects the terminals of the circuit

and allows current to flow through

the load.

NC and NO are also defined as the momentary type of switches.

Pushbutton

Structure of pushbutton

Let's understand the structure of pushbutton.

The pushbutton is a square shape button with four

terminals, as shown below:

The two pins are next to each other on one side and

another two pins on the other side. The pins across

to each other are connected. The pins next to each other can only be

connected, when we press the button.

connect two opposite terminals of the pushbutton, as

shown below:

Let's understand buttons with an example.

The steps for such an example are listed below:

1. Attach the red LED on the breadboard board.

2. Connect a resistor in series with the LED and

connect it to PIN 2 of the breadboard.

3. Connect the negative terminal of the LED to

the GND pin.

4. Attach the pushbutton on the breadboard.

5. Connect a 10 kohm resistor in series with the lower right corner of the

pushbutton and connect it to the GND pin.

6. Connect the upper right corner of the pushbutton to PIN 4.

7. Connect lower left corner of the pushbutton to 5V.

The circuit is shown below:

Code

The code for the upper circuit is shown below:

1. const int ledpin = 2; // initializing pin number 2 to the LED

2. const int buttonpin = 4; // initializing pin number 4 to the button

3. int buttonState = 0;

4. void setup()

5. {

6. Serial.begin(9600);

7. pinMode(buttonpin, INPUT);

8. pinMode(ledpin, OUTPUT);

9. }

10. void loop()

11. {

12. // read the state of the pushbutton value

13. buttonState = digitalRead(buttonpin);

14. // check if pushbutton is pressed. if it is, the

15. // buttonState is HIGH

16. if (buttonState == HIGH) {

17. // turn LED on

18. digitalWrite(ledpin, HIGH);

19. Serial.println("LED is ON");

20. //When we press the button, it will print LED is ON.

21. delay (500);

22. }

23. else

24. {

25. // turn LED off

26. digitalWrite(ledpin, LOW);

27. Serial.println("LED is OFF"); // When we press the button, it

will print LED is OFF.

28. }

29. delay (500);

30. }

Arduino PWM

The PWM (Pulse Width Modulation) is a method of controlling the average

voltage. It is a stream of voltage pulses that reduces the electric power

supplied by the electrical signal. The effective voltage is controlled by the

width of individual pulses in a stream of voltage pulses of a PWM signal.

The common use of PWM pins includes controlling LEDs and DC Motors.

The PWM in LED controls the frequency of the light. It means the LED will

be ON/OFF at a frequency detectable by our eyes.

The PWM in DC Motors acts like a pulse train of a DC signal. The DC motors

receive a high or low electrical power input based on the width of the PWM

pulses.

The application of PWM is voltage regulation, audio signal generation,

devices control (pump, hydraulics, etc.), servo motor, etc.

Principle of PWM

The state of the Digital Input/Output pins in Arduino is either HIGH (1) or

LOW (0). Here, HIGH means the voltage is approx to 5V. LOW means the

voltage is equivalent to 0 volts.

The PWM is a square wave signal, which is represented as:

The duty cycle of the rectangular pulse is shown below:

Here,

to: It is the duration of the signal when the signal is HIGH.

tc: It is the total duration of the signal as the sum of HIGH and LOW.

Duty cycle of a PWM wave

As defined above, the duty cycle is the ratio of the pulse width to the total

width of a signal.

Consider the below image:

The above image displays the wave at different duty cycles.

Control the effective voltage of the DC motor in Arduino by regulating the

PWM duty cycle.

For example,

Arduino UNO

Arduino UNO board consists of 14 digital Input/Output pins, where pin 11,

10, 9, 6, 5, and 3 are PWM pins. The pinMode(), digitalRead(), digitalWrite()

functions control the operation of non-PWM pins.

The pinMode() function is used to declare the specific pin as input/output.

The digitalRead is used to read the HIGH or LOW state of a pin.

Programmer need to use the analogWrite() to set the duty cycle of a PWM

(Pulse Width Modulation) pulse.

Let's discuss analogWrite() in detail.

analogWrite() : It writes a PWM value or analog value to a pin. Programmer

can light an LED with varying brightness with the help of analogWrite(). It is

also used to drive a motor at varying speeds.

When an analogWrite() function is called, a stable rectangular wave of

particular duty cycle is generated by the specified PWM pin until the next

analogWrite() is called on that same pin.

For example,

The PWM pins on the Arduino Leonardo/Micro are 3, 5, 6, 9, 10, 11, and

13. The frequency on pin 3 and 11 will be 980Hz, while other PWM pins

have 490Hz of frequency.

The syntax is:

1. analogWrite(pin, value)

where,

pin: Specified PWM pin on the board

value: It determines the value of the duty cycle between 0 and 255.

The data type used here is int.

Note: The analogWrite() function is not related to the analogRead() or analog

pins.

What is the difference between analogRead() and analogWrite()?

The main differences between analogRead() and analogWrite() are listed

below:

o The analogRead() is used to read the analog value, while analogWrite()

function is used to write the PWM value.

o The value of analogRead() ranges from 0 to 1023, while analogWrite()

ranges from 0 to 255.

Let's understand with an example.

Consider the below code:

1. void setup()

2. {

3. pinMode(10, OUTPUT); // the declared pin must be among the PWM

pins.

4. }

5. void loop()

6. {

7. analogWrite(10, 255); // 255 is the highest value.

8. // modify the value as per the required brightness.

9. delay(1000);

10. analogWrite(10, 0);

11. delay(1000); // time delay of 1 second or 1000 milliseconds

12. }

Here, the LED will light at full brightness.

Let's discuss an example to control the brightness of the LED.

calculate Arduino PWM

The analogWrite() function discussed above is used to generate a PWM

signal in Arduino.

The value associated with the analog signal is from 0 to 255. It means 256

levels of values.

The maximum voltage read by the Arduino is 5V.

PWM voltage = (Duty cycle/ 256) x 5V

Code Example

Let's discuss a method to control the brightness of an LED connected to the

PWM pin.

Here, we have connected the LED to the PWM pin 6.

Consider the below code.

1. void setup()

2. {

3. pinMode(6, OUTPUT); // the declared pin must be among the PWM p

ins.

4. }

5. void loop()

6. {

7. analogWrite(6, 255); // brightness increases as value increases

8. delay(1000);

9. analogWrite(6, 180);// brightness level

10. delay(1000);

11. analogWrite(6, 80);

12. delay(1000);

13. analogWrite(6, 20); // brightness decreases as value decreases

14. delay(1000);

15. }

In the above example, the brightness of the LED will decrease according to

the specified value of brightness.

Arduino Library

The Library is considered as the advanced feature, which extends the

capabilities of the Arduino IDE. It means that the libraries provide extra

functionality to the programming platform of Arduino.

The libraries in Arduino are written in C or C++ (.cpp). These libraries allow

us to manipulate data and work with the hardware. To implement any

Library in the Arduino IDE, go to the Sketch -> Import Library. There are

several libraries available for download. Programmer can also create our

own library. Let's discuss some of the libraries.

Standard Libraries

The standard libraries are listed below:

EEPROM

It stands for Electronic Erasable Programmable Read Only Memory. The

EEPROM is associated with the microcontroller present on the AVR

or Arduino Boards. The EEPROM library allows us to read the bytes stored

in the memory when the power of the board is off.

The size of EEPROM varies in different boards, such as 1KB or 1024 bytes

on the ATmega328P. It can also be of 4KB or 4096 bytes on the

Microcontroller ATmega2560, etc.

The library is declared as:

1. #include <EEPROM.h>

For example, EEPROM Read, EEPROM Clear, EEPROM Write, EEPROM Get,

EEPROM Update, EEPROM Put, EEPROM Iteration, etc.

Ethernet Library

The Ethernet library works with the Arduino Ethernet shield and other

related devices. The Ethernet library allows us to connect the Arduino board

to the Internet.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/arduino-ide

The SPI bus acts as an intermediate between the board and the shield.

The associated library is:

1. #include <Ethernet.h>

2. #include <SPI.h>

For example, TelnetClient, WebServer, WebClientRepeating, WebClient,

ChatServer, DnsWebClient, UdpNtpClient, UdpSendReceiveString, etc.

Firmata Library

For the programming environment, Programmer can create custom firmware

without producing their own objects and protocols. It is used to implement

the firmware protocol, which communicates with the software on the host

computer.

The associated library is:

1. #include <Firmata.h>

GSM Library

The GSM library exists on the IDE version 1.0.4 and up. The GSM library

allows us to perform the operations on the Arduino board similar to the

GSM phone, such as internet connection, send and receive messages, and to

place voice calls.

The library is declared as:

1. #include <GSM.h>

Liquid Crystal Library

It is a library that permits Arduino to communicate with LCDs, which are

based on a compatible chipset called Hitachi HD44780. Such chipsets are

found on most types of text-based LCDs. It works with either an 8-bit mode

or 4-bit mode. Here, the bit mode signifies the data lines in addition to the

enable, rs, and rw control lines (optional).

The library is declared as:

1. #include <LiquidCrystal.h>

The examples are Hello World, Cursor, Blink, etc.

SD Library

It allows writing to or reading from SD cards. For example, Arduino Ethernet

Shield. The file names include the paths separated by the forward slashes,

which are passed to the SD Library. But, SPI is used for the communication

between the SD card and the Arduino.

The library is declared as:

1. #include <SPI.h>

2. #include <SD.h>

The examples are Dump files, List Files, Read Write, etc.

Servo Library

The Servo library permits Arduino to work with servo motors. It allows

controlling the integrated shaft and gears. Programmer can also position

shaft at different angles between 0 and 180 degrees. The servo library on

Arduino boards can support upto 12 motors, while on Arduino Mega board,

it can support upto 48 motors.

The library is declared as:

1. #include <Servo.h>

SPI Library

The SPI (Serial Peripheral Interface) is a serial data protocol.

The microcontrollers use the serial protocol to communicate over short

distances with one or more peripheral devices quickly. The required

connection of SPI is a full-duplex that allows devices to simultaneously sent

and receive data.

The library is declared as:

1. #include <SPI.h>

The examples are Dump files, List Files, Read Write, etc.

Stepper Library

The Stepper library in Arduino permits to control of bipolar or unipolar

stepper motors.

The library is declared as:

1. #include <Stepper.h>

The Stepper includes stepper speed control, stepper one revolution, etc.

WiFi Library

The WiFi library permits Arduino to establish a connection with the internet.

It can either be a server to receive the incoming connections or a client to

perform outgoing connections.

The personal encryptions supported by the WiFi library are WPA2 and WEP

except for WPA2 Enterprise. Arduino uses the SPI bus to communicate with

the WiFi shield.

The library is declared as:

1. #include <WiFi.h>

The examples include WiFiWebClient, WiFiWebServer, etc.

Audio Library

The Audio library is compatible with the Arduino Due board only. It enables

the board to playback .wav files from the specific storage devices, such as

the SD card.

It plays sounds by using the DAC0 and DAC1 pins.

The library is declared as:

1. #include <Audio.h>

The example is a Simple Audio Player.

Steps involve to install a library in Arduino

The steps are listed below:

Arduino Library Manager

o Open the library manager to install a new library in Arduino. Click

on Sketch -> Include Library -> Manage Libraries, as shown below:

o A dialog box containing various libraries will appear, as shown below:

o A list of libraries will appear that are ready to install. Need to select

the specific library -> select the version -> click on Install button, as

shown below:

Sometimes there is only one version available for download. In such case,

the dropbox of the version will not appear. Hence, it's normal. The

'INSTALLED' tag will appear in front of the library that is already installed

on the computer.

Importing a .zip Library

If Programmer wants to add their own library, they can select the desired

folder from their computer. The particular zip file containing the library can

be imported in the Arduino.

It is shown below:

Programmer can also recheck from the option Sketch -> Include library to

see that the added libraries are present or not on the list.

Arduino LCD Display

The LCD (Liquid Crystal Display) is a type of display that uses the liquid

crystals for its operation. Here, programmer will accept the serial input from

the computer and upload the sketch to the Arduino. The characters will be

displayed on the LCD.

The library that allows us to control the LCD display is called Liquid

Crystal Library, which is discussed below:

The library is declared as:

1. #include <LiquidCrystal.h>

The library is based on a compatible chipset called Hitachi HD44780. It is

found on most of the LCDs that are based on text. It works with either an 8-

bit mode or 4-bit mode. Here, the bit mode signifies the data lines in

addition to the enable, rs, and rw control lines (optional).

LCD Structure

The LCD display has a 16-pin interface.

The structure of the LCD is shown below:

The Liquid Crystal Display has a

parallel interface. It means that the

microcontroller operates several pins

at once to control the LCD display.

The 16-pins present on the LCD

display are discussed below:

o RS : The Register Select

(RS) pin controls the memory

of the LCD in which we write

the data. Programmer can

select either the data

register or the instruction

register.

o R/W : The Read/Write pin

selects the reading or writing

mode.

o E : The Enable (E) mode is used to enable the writing to the registers.

It sends the data to the data pins when the mode is HIGH.

o D0 to D7 : These are eight data pins numbered as D0, D1, D3, D3,

D4, D5, D6, and D7. We can set the state of the data pin either HIGH

or LOW.

Pin 1 of the LCD is the Ground pin, and pin 2 is the Vcc or the voltage

source pin.

The pin 3 of the LCD is the VEE or the contrast pin. For example, we can

connect the potentiometer's output to the VEE and can adjust the contrast

of the LCD.

The A and K pins are also called as Backlight pins (Bklt+ and Bklt-).

LCD Interfacing with Arduino

Hardware Required

The components required for the project are listed below:

o LCD Screen (Hitachi HD44780 compatible driver display)

o 1 x 220 Ohm Resistor

o 1 x 10K Ohm Resistor

o Arduino UNO board or Genuino board

o Jump wires

o Pin header required to solder the LCD display pins

o breadboard

Structure of the project

The structure of the project is shown below:

Procedure

The connection is explained below:

first connect the data pins of LCD to the digital pins.

o Connect the RS pin of LCD to pin 13 of the Arduino board.

o Connect the Enable pin of LCD to pin 12 of the Arduino board.

o Connect the D4 pin of LCD to pin 6 of the Arduino board.

o Connect the D5 pin of LCD to pin 4 of the Arduino board.

o Connect the D6 pin of LCD to pin 3 of the Arduino board.

o Connect D7 pin of LCD to pin 2 of the Arduino board.

o Connect the middle terminal of the potentiometer to the VEE (contrast

pin).

o Connect the two ends of the potentiometer to the Ground and 5V.

o Connect one end of a resistor to the A and K of the LCD and another

end to 5V.

Sketch

The code to display the specified message on the LCD display is given below:

1. // here, we will include the liquid crystal library:

2. #include <LiquidCrystal.h>

3. // initialize the library with the pins on the Arduino board

4. LiquidCrystal lcd(13, 12, 6, 4, 3, 2);

5. void setup() {

6. // Here, 16 and 2 are the columns and rows of the LCD

7. lcd.begin(16, 2);

8. // It prints the message on the LCD.

9. lcd.print("hello Arduino");

10. // We can modify the message as per our choice.

11. }

12. void loop() {

13. // It sets the cursor to column 0, line 1

14. // Since counting begins with 0, line 1 is the second row

15. lcd.setCursor(0, 1);

16. // print the number of seconds

17. lcd.print(millis() / 1000);

18. // Here, millis() is the return type of the timer in milliseconds

19. }

Connection Diagram

Sensors and Transducers

Sensors and transducers are input and output devices respectively that can be

incorporated into an electronic circuit or system allowing it to measure or change its

surrounding environment.

The word “Transducer” is the collective term used for both Sensors which can be

used to sense a wide range of different energy forms such as movement, electrical

signals, radiant energy, thermal or magnetic energy etc, and Actuators which can be

used to switch voltages or currents.

Electrical Transducers are used to convert energy of one kind into energy of another

kind, so for example, a microphone (input device) converts sound waves into

electrical signals for the amplifier to amplify (a process), and a loudspeaker (output

device) converts these electrical signals back into sound waves and an example of

this type of simple Input/Output (I/O) system is given below.

Simple Input/Output System using Sound Transducers

Common Sensors and Transducers

Quantity being
Measured

Input Device (Sensor)
Output Device
(Actuator)

Light Level

Light Dependant Resistor (LDR)
Photodiode
Photo-transistor
Solar Cell

Lights & Lamps
LED’s & Displays
Fibre Optics

Temperature

Thermocouple
Thermistor
Thermostat
Resistive Temperature Detectors

Heater
Fan

Force/Pressure
Strain Gauge
Pressure Switch
Load Cells

Lifts & Jacks
Electromagnet
Vibration

Position

Potentiometer
Encoders
Reflective/Slotted Opto-switch
LVDT

Motor
Solenoid
Panel Meters

Speed
Tacho-generator
Reflective/Slotted Opto-coupler
Doppler Effect Sensors

AC and DC Motors
Stepper Motor
Brake

Sound
Carbon Microphone
Piezo-electric Crystal

Bell
Buzzer
Loudspeaker

All types of sensors can be classed as two kinds, either Passive Sensors or Active

Sensors. Active sensors require an external power supply to operate, called

an excitation signal which is used by the sensor to produce the output signal.

A passive sensor does not need any additional power source or excitation voltage.

Instead a passive sensor generates an output signal in response to some external

stimulus. For example, a thermocouple which generates its own voltage output

when exposed to heat. Then passive sensors are direct sensors which change their

physical properties, such as resistance, capacitance or inductance etc.

But as well as analogue sensors, Digital Sensors produce a discrete output

representing a binary number or digit such as a logic level “0” or a logic level “1”.

Analogue and Digital Sensors and Transducers

Analogue Sensors

Analogue Sensors produce a continuous output signal or voltage which is generally

proportional to the quantity being measured. Physical quantities such as

Temperature, Speed, Pressure, Displacement, Strain etc are all analogue quantities as

they tend to be continuous in nature.

For example, the temperature of a liquid can be measured using a thermometer or

thermocouple which continuously responds to temperature changes as the liquid is

heated up or cooled down.

Thermocouple used to produce an Analogue Signal

Analogue sensors tend to produce output signals that are changing smoothly and

continuously over time. These signals tend to be very small in value from a few

mico-volts (uV) to several milli-volts (mV), so some form of amplification is

required.

Then circuits which measure analogue signals usually have a slow response and/or

low accuracy. Also analogue signals can be easily converted into digital type signals

for use in micro-controller systems by the use of analogue-to-digital converters, or

ADC’s.

Digital Sensors

As its name implies, Digital Sensors produce a discrete digital output signals or

voltages that are a digital representation of the quantity being measured. Digital

sensors produce a Binary output signal in the form of a logic “1” or a logic “0”,

(“ON” or “OFF”).

Light Sensor used to Produce a Digital Signal

In simple example above, the speed of the rotating shaft is measured by using a

digital LED/Opto-detector sensor. The disc which is fixed to a rotating shaft (for

example, from a motor or robot wheels), has a number of transparent slots within its

design. As the disc rotates with the speed of the shaft, each slot passes by the sensor

in turn producing an output pulse representing a logic “1” or logic “0” level.

These pulses are sent to a register of counter and finally to an output display to show

the speed or revolutions of the shaft. By increasing the number of slots or

“windows” within the disc more output pulses can be produced for each revolution

of the shaft.

Compared to analogue signals, digital signals or quantities have very high

accuracies and can be both measured and “sampled” at a very high clock speed. The

accuracy of the digital signal is proportional to the number of bits used to represent

the measured quantity.

For example, using a processor of 8 bits, will produce an accuracy of 0.390% (1 part

in 256). While using a processor of 16 bits gives an accuracy of 0.0015%, (1 part in

65,536) or 260 times more accurate. This accuracy can be maintained as digital

quantities are manipulated and processed very rapidly, millions of times faster than

analogue signals.

Sensors

Sensor measuring very small changes must have very high sensitivity. Sensors are

designed in such a way that they cause only a small effect on what is measured. That

is why most of the sensors are small in size. Analog Sensors produce a continuous

output signal or voltage which is generally proportional to the quantity being

measured. Digital Sensors produce a discrete output signal or voltage that is a digital

representation of the quantity being measured.

Voltage Sensor:

Voltage sensor converts potential difference measured

between two points of an electrical circuit into

proportional electrical signal. This signal can be stored

for further analysis or can be utilized for control purpose.

Current Sensor:

Current sensor can be used to measure current of an

electrical circuit. It converts current of an electrical circuit

into proportional electrical signal. This signal can be

utilized for further analysis or control purpose.

Temperature Sensor:

Temperature sensors are electronic devices used to measure

temperature of a medium. It provides a signal proportional

to the temperature of the medium. Mainly there are two

types of temperature sensors contact type sensors and non-contact type. Contact

type sensors measure the temperature of an object or liquid by physical contact.

These types of sensors are mainly used for low temperature measurements. Non-

contact type sensors use the thermal radiation of the heat source to monitor change

in temperature. Non-contact sensors are used when the object is moving or when

contact with the object changes its temperature. For very high temperature

measurement this type of sensors are used. Thermistor and thermocouple are two

commonly using temperature sensors.

Thermistor:

Thermistor is a resistor whose resistance change

proportionally with change in temperature. In most of

the thermistors, resistance decreases with increase in

temperature. Thermistors have very high speed of

response to any changes in temperature. Generally

thermistors are constructed using ceramic or polymer

material.

This figure shows the circuit

for measuring temperature

using thermistor. Resister R1

pulls thermistor to reference

voltage Vref. Resister and

thermistor combination forms

a voltage divider. According to

temperature, thermistor

resistance will change. This

results in varying voltage at

the junction. This voltage is

amplified by an operational amplifier.

Thermocouple:

Thermocouples are temperature sensors that consist of two junctions of dissimilar

metals, such as copper and constantan that are welded or crimped together. One

junction (J1) is connected to the object whose temperature is to be measured. This

junction is called measuring junction. Other is connected to a known temperature.

This junction is known

as reference junction.

Due to the

temperature

difference in two

junctions, current will

flow through

thermocouple. We can measure the potential difference and by processing this

voltage we can calculate the temperature of the body. Thermocouple is the most

commonly used temperature sensor. It has widest temperature range from -200oC to

2000oC.

Light Sensor:

Light sensor means a passive electronics device which can be used for measuring

light. It produces a signal proportional to the intensity of light falls on it. Light

sensors are commonly known as "Photoelectric Devices" or "Photo Sensors" because

they convert light energy into electricity.

Light Dependent Resistor (LDR):

LDR normally have very high resistance about

1000000 ohms. As light fall on it, its resistance

decreases to a great extent. When this material is

exposed to light by creating hole-electron pairs its

resistance will drop from several thousands of ohms

to only a few hundred ohms.

Photodiode:

Photo diode is a device which converts light into current or voltage, according to the

mode of operation. It is similar to

conventional PN-junction diode,

because it is a regular

semiconductor diodes whose outer

casing is either transparent or has a

lens to focus the light onto the PN

junction for increased sensitivity.

Photo-diode varies the current

conducted through it according to

the intensity of light falls on it. As light fall in it more charge carriers are created.

Photodiodes have a more linear response than LDRs. Photo diodes are very accurate

and stable than LDR. Commonly used materials to produce photo diodes are silicon,

germanium, lead sulfide etc.

Colour Sensor:

Colour sensor is used to detect colours. Colour

sensors mainly consist of an array of photo

detectors. Each of photodiodes will have red, blue

or green filter or no filter. Photo diodes with each

filter are present in equal numbers. They are also

distributed evenly throughout the array. Colour

filter only allow the particular Colour to pass

through it and block the rest. So using this array

intensity of light can be easily calculated. An oscillator present in the sensor will

produce a square wave with frequency proportional to the intensity of the chosen

colour.

Pressure Sensor:

Electronics pressure sensors are used to measure pressure, mainly of liquids and

gases. They record the pressure and convert it

into proportional output electrical signal.

Capacitive pressure sensor consists of two thin

metal plates as capacitor. One side of this

capacitor is exposed to measuring pressure

and other to a reference pressure. Change in

pressure changes the gap between the plates.

So capacitance varies with difference in

pressure. By processing this capacitance we

can measure pressure. Pressure sensors have wide variety of application in different

fields such as automobile, manufacturing, aviation, bio medical measurements, air

conditioning, hydraulic measurements etc.

Smoke Sensor:

Smoke sensors are used to detect smoke. It is

widely used for many industrial applications as

well as commercial application. Smoke sensors

work either by optical detection or by ionization

process. Some sensors use both the detection

methods for higher sensitivity to smoke. In

optical detection method sensor have a light

source producing a light beam and also a

photodiode. When smoke enters in to the sensor some light is scattered by smoke

particle. Scattered light is detected by the photodiode. When smoke particles enter

the chamber it combines with ion and neutralizes it and drop the current. By

monitoring this current we can detect smoke.

Humidity Sensor

It is an electronic sensor which measures

atmospheric humidity by changing its electrical

characteristics such as resistance or capacitance

according to the amount of atmospheric

humidity. Output voltage or current is

produced proportional to the fluctuations in

humidity. Most common humidity sensors use

capacitive measurements. They consist of two

metal plates with a non-conductive humidity-

sensing film between them. This film is to collect moisture from the air. Moisture

cause minute changes in voltage between two plates. This change in voltage is

proportional to the amount of humidity.

Arduino sensors:

Sensors are responsible for the conversion of physical quantities like temperature or

light into electrical quantities. Arduino sensors are made for fluent and efficient

output. The digital signals are generated through IR obstacles or ultrasonic modules.

Such as Motion sensors, object detection transfer the environment changes as an

input signal to the electronic device. Arduino include different type of sensors such

as light sensors, temperature sensors, motion or object detector, ultrasonic sensors,

knock sensors, tracking or metal detector etc.

IR obstacle avoidance sensor:

IR transmitter and receiver

work together to generate

electric signal under the

influence of any object coming

into the way of IR light. The

range of the module can be

adjusted as required by using its potentiometer. The principle of the IR sensor is the

reflection of IR light that is detected through the receiver.

Soil moisture sensor:

Also referred to as soil humidity

detector. Soil moisture sensor

detect the water content in the soil

based on the alteration of soil

properties that are depending on

the moisture. It works best when

completely surrounded by soil.

Different types of moisture content

are available such as a point soil

moisture detector that tells the

water content of a single point.

Multiple single-point sensors are used to measure the water content of more areas.

There are soil water profiling probes are being used to detect water on vertical soil

horizons.

Microphone sound sensor:

The sound sensor detects the loudness of

sound. The sensitivity of the digital output pin

can be adjusted by a built-in potentiometer. It

is used to detect the surrounding environment

sound as if it accedes the limit. LED light turns

on if the sound intensity gets higher than a

specific threshold.

Barometric pressure sensor:

Barometer/barometric

pressure sensors are used to

detect atmospheric pressure

alterations in the surrounding

environment. Mainly it is used

to interpret short-term weather

changes. The miniaturized

barometers can be used in

microcontroller boards

(Arduino) or smartphones. In

the past mercury, barometers

were used but now in modern pressure sensors, no liquid is required. MEMS and

Aneroid barometers are widely used nowadays.

https://www.electronicslovers.com/wp-content/uploads/2021/08/sound.jpg
https://www.electronicslovers.com/wp-content/uploads/2021/08/soil.jpg

Photoresists:

Light-sensitive resistors alter the resistance

value of the component under exposure to light.

There is an inverse relationship between

resistance and light i.e. when light intensity

increases the resistance decreases. These are

also known as Light Dependent Resistors. LDR

has wide applications influencing daily life.

LDR or photoresists are used in Street lights,

automatic doors, alarm clocks, light intensity

meters, etc.

Knock sensor:

This sensor is consists of LED light that provide

a visual output for the input of knock sound or vibration.

The intensity of the signal is depicted by turning on the LED

light. Knock sensor is widely used in car engines to detect

ignition timing and damage control. The sound or vibration

signal of the engine is altered in an electrical signal directed

to the car’s ECU (engine control unit). CEL (check engine

light) of cars can also be monitored through a knock sensor.

Heart rate sensor:

For determining and tracking heartbeats heart rate pulse

sensor is used under voltage of 3 to 5. An optical

heartbeat sensor assesses pulse waves through blood

pressure alterations in vessels. Optical sensors use

alterations in volume as a signal and a green LED light to

make an output accordingly.

Alcohol sensor/MQ3 sensor:

It is a gas sensor that assesses the presence of ethanol in the

air. The concentration of ethanol/alcohol determines the

output through LED light. The range of detection is 10-1000

ppm of alcohol or ethanol.

Reed switch/magnetic proximity sensor:

Reed switch is used to detect the magnetic fields

and control electricity flow. In the simplest reed

switch, a pair of ferromagnetic blades is used on

board. Under a magnetic field, the blades tend to

pull towards each other and give the signal of

https://www.electronicslovers.com/wp-content/uploads/2021/08/heart.jpg
https://www.electronicslovers.com/wp-content/uploads/2021/08/alcohol.jpg
https://www.electronicslovers.com/wp-content/uploads/2021/08/reed-swithch.jpg

CLOSE, and in absence of a magnetic field as they keep their distance the signal is

found in ON for electricity flow. On Arduino board magnetic sensor is connected

through 5 volts pin to the board along with series of resistors to a 3.3volts pin.

Transistor output can be seen when the magnetic field is nearby to the sensor and

vice versa.

Optical Fingerprint sensor:

Ridges and grooves of fingerprint

determined through light and dark area

identified by the scanner of fingerprint

sensor which acquires finger tip’s low-

resolution snap shorts and generates a

2D image of the fingerprint. For

illumination LED light is used. It can be

connected to TTL serial system,

microcontroller, and FLASH memory.

The ultrasonic fingerprint sensor is more

accurate than the optical sensor as it gives 3D fingerprint model acquired through

ridges, pores, and pulse.

Speed sensor/Tachometer:

Speed of rotating or moving objects like motor or pulse can be determined by

Arduino speed sensor. It determines the rotational speed and changes in the speed

of the object. There are many kinds of tachometers used like magneto-resistive speed

sensor, IR dependent speed sensor, and hall-effect based speed sensor.

Flame sensor:

Flame and light can be detected through

a flame sensor. The light wavelength of 760-

1100 nm within 0.8 m can be detected

through this sensor. Flame of Light Intensity

determines the distance of detection. These

sensors are used in houses, factories, or

offices to avoid possible damages and fir

breakout.

Interfacing DHT11 Humdity & Temperature Sensor with Arduino & LCD

Introduction

The DHT11 Temperature and Humidity Sensor is an advanced piece of

equipment that boasts a calibrated digital signal output by its integrated

temperature and humidity sensor complex. At the heart of this sensor lies an

efficient 8-bit microcontroller. The DHT11 sensor is designed featuring a resistive

element and a wet NTC temperature measuring component.

https://www.electronicslovers.com/wp-content/uploads/2021/08/unnamed.png
https://www.electronicslovers.com/wp-content/uploads/2021/08/flame.jpg

DHT11 Humidity Temperature Sensor

The DHT11 is a commonly used and cost-effective sensor that provides

readings of both temperature and humidity. Compact and cost-effective, it has

become a popular choice for its relative accuracy and ease of integration. Operating

on a simple one-wire communication protocol, the DHT11 can be seamlessly

interfaced with a variety of microcontrollers.

Features/Specifications of DHT11 Sensor

• Power Supply: Typically operates from 3.3 to 5V DC, making it suitable for

interfacing with most microcontrollers.

• Temperature Range: 0°C to 50°C with ±2°C accuracy.

• Humidity Range: 20% to 90% RH (Relative Humidity) with ±5% accuracy.

• Output: Calibrated digital signal. It employs a single-wire communication

protocol.

• Sampling Period: Suggested minimum time of 1 second between readings to

ensure sensor accuracy.

• Dimensions: Compact size, Available in a 4-pin single-row package.

• Longevity: Offers excellent long-term stability.

Construction of DHT11 Sensor

• Sensing Elements: The DHT11 integrates two primary components for its

operations:

1. A thermistor for temperature measurements.

2. A capacitive humidity sensor for gauging atmospheric moisture.

• IC Integration: An 8-bit microcontroller reads the outputs from the two

sensors and translates them into a format suitable for digital systems.

• Packaging: The sensor elements are often encased in a plastic casing, which

ensures protection against environmental factors while still allowing for

accurate readings.

Working of DHT11 Sensor

o Temperature Measurement: The

core of the temperature sensing

capability is the thermistor, a type

of resistor whose resistance

changes with temperature. As the

temperature fluctuates, so does the

resistance of the thermistor. This

variance is then read and

converted into temperature values

by the on-board microcontroller.

o Humidity Measurement: The capacitive humidity sensor operates by having a

dielectric material between two

plates. As humidity changes, the

dielectric constant of the material

changes, leading to a variance in

capacitance. This change in

capacitance is then read and

interpreted as a humidity

percentage by the on-board microcontroller.

o Signal Output: After the microcontroller processes the readings, the data is sent

as a digital signal through a single-wire communication protocol. This digital

output can then be easily read by microcontrollers such as Arduino, making

integration and data interpretation straightforward.

o Pinout of DHT11 Sensor

The DHT11 typically comes with a 4-pin package, although only three of them are

functionally used:

1. VCC (Pin 1): This is the power

supply pin, which can accept

voltages from 3.3V to 5V, making it

compatible with most

microcontroller systems.

2. Data (Pin 2): This is the pin

through which the DHT11

communicates. It uses a

proprietary single-wire protocol to

transmit temperature and humidity

data to the connected microcontroller.

3. NC (Pin 3): Not connected or used.

4. GND (Pin 4): Ground pin, used to complete the circuit.

Interfacing DHT11 Sensor with Arduino

Let us interface the DHT11 Humidity Temperature Sensor with Arduino UNO.

Hardware Connection

The connection diagram is pretty simple as shown in the image below.

Connect the VCC & GND Pin of

DHT11 Sensor Module to 3.3V

& GND pin of Arduino

respectively. Similarly connect

https://how2electronics.com/wp-content/uploads/2018/12/DHT11-Pinout.jpg

the DHT11 Data pin to Arduino Digital Pin 2.

Source Code/Program

First programmer need to install the DHT11 Sensor library. Download the DHT11

Sensor library from following link and add it to the Arduino Library Folder.

Download: DHT11 Sensor Library

Here is a complete code for interfacing DHT11 Sensor with Arduino.

#include "DHT.h"

#define DHTPIN 2 // Digital pin connected to the DHT sensor

#define DHTTYPE DHT11 // DHT 11

 DHT dht(DHTPIN, DHTTYPE);

 void setup() {

 Serial.begin(9600);

 dht.begin();

}

 void loop()

{

 // Wait a few seconds between measurements.

 delay(2000);

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)

 float h = dht.readHumidity();

 // Read temperature as Celsius (the default)

 float t = dht.readTemperature();

 // Read temperature as Fahrenheit (isFahrenheit = true)

 float f = dht.readTemperature(true);

 // Check if any reads failed and exit early (to try again).

 if (isnan(h) || isnan(t) || isnan(f)) {

 Serial.println(F("Failed to read from DHT sensor!"));

 return;

 }

 // Compute heat index in Fahrenheit (the default)

 float hif = dht.computeHeatIndex(f, h);

 // Compute heat index in Celsius (isFahreheit = false)

 float hic = dht.computeHeatIndex(t, h, false);

 Serial.print(F("Humidity: "));

 Serial.print(h);

 Serial.print(F("% Temperature: "));

 Serial.print(t);

 Serial.print(F("°C "));

https://github.com/adafruit/DHT-sensor-library

 Serial.print(f);

 Serial.print(F("°F Heat index: "));

 Serial.print(hic);

 Serial.print(F("°C "));

 Serial.print(hif);

 Serial.println(F("°F"));

}

To upload this code, Select Arduino UNO from Board Manager and the COM port.

After uploading the code, open the Serial Monitor.

The Serial Monitor will display the temperature readings in degree Celcius as well as

Fahrenheit. It will also show the value of Humidity and Heat Index.

Interfacing DHT11 Sensor with Arduino & LCD Display

Hardware Connection

The hardware connection is very simple as shown in the schematic below.

Connect the SDA & SCL pin of LCD Display to Arduino A4 & A5 Pin respectively.

Similarly connect the VCC & GND of LCD Display to 5V & GND of Arduino.

Source Code/Program

After LCD connection is done, you can move to the coding part of this project.

Programmer need to add LCD I2C Library to the Arduino library folder again

https://how2electronics.com/wp-content/uploads/2018/12/DHT11-Readings.jpg
https://how2electronics.com/wp-content/uploads/2018/12/Arduino-DHT11-16x2-LCD-Display.jpg

Here is a complete code for interfacing DHT11 Sensor with Arduino & 16×2 I2C

LCD Display. Copy the following code and paste it on your Arduino IDE editor

window.

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

#include "DHT.h"

LiquidCrystal_I2C lcd(0x27, 16, 2);

#define DHTPIN 2 // Digital pin connected to the DHT sensor

#define DHTTYPE DHT11 // DHT 11

 DHT dht(DHTPIN, DHTTYPE);

 void setup()

{

 Serial.begin(9600);

 lcd.init();

 lcd.backlight();

 dht.begin();

}

 void loop()

{

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)

 float h = dht.readHumidity();

 // Read temperature as Celsius (the default)

 float t = dht.readTemperature();

 // Read temperature as Fahrenheit (isFahrenheit = true)

 float f = dht.readTemperature(true);

 // Check if any reads failed and exit early (to try again).

 if (isnan(h) || isnan(t) || isnan(f)) {

 Serial.println(F("Failed to read from DHT sensor!"));

 return;

 }

 // Compute heat index in Fahrenheit (the default)

 float hif = dht.computeHeatIndex(f, h);

 // Compute heat index in Celsius (isFahreheit = false)

 float hic = dht.computeHeatIndex(t, h, false);

 Serial.print(F("Humidity: "));

 Serial.print(h);

 Serial.print(F("% Temperature: "));

 Serial.print(t);

 Serial.print(F("°C "));

 Serial.print(f);

 Serial.print(F("°F Heat index: "));

 Serial.print(hic);

 Serial.print(F("°C "));

 Serial.print(hif);

 Serial.println(F("°F"));

 lcd.setCursor(0, 0);

 lcd.print("Temp: ");

 lcd.print(t);

 lcd.print("*C");

 lcd.setCursor(0, 1);

 lcd.print("Humi: ");

 lcd.print(h);

 lcd.print("%");

 delay(2000);

 lcd.clear();

}

Upload the code to Arduino Board. After the code is uploaded, the LCD Display will

show the value of Temperature and Humidity. The reading changes after every 2

seconds.

MQ-2 Flammable Gas and Smoke Sensor interfacing with Arduino

MQ-2 Gas Sensor

The MQ-2 Combustible Gas and Smoke Sensor is commonly used in smoke and

gas detectors. This sensor can not only detect gas or smoke, but can also detect LPG,

Alcohol, Propane, Hydrogen, Methane, and Carbon Monoxide.

MQ-2 Gas Sensor Pinout

The MQ-2 Gas detection sensor module has four pins VCC, GND, Aout and Dout that

can be used to get the needful information out of the sensor, The pinout of the MQ-2

Gas detection sensor is given below:

VCC is the power supply pin of the Gas Detection Sensor that can be connected to

5V of the supply.

GND is the ground pin of the board and it should be connected to the ground pin of

the Arduino.

DOUT is the Digital output pin of the board, output low indicates gas or smoke is not

present in the atmosphere and output high indicates gas or smoke is present in the

atmosphere.

AOUT is the Analog output pin of the board that will give us an analog signal which

will vary between vcc and ground based on the gas level detected

MQ-2 Gas Sensor Working

The MQ-2 gas sensor needs a heating element in order to properly detect

combustible glasses but, a heating element close to combustible gasses could be

disastrous, so the sensor is manufactured with an anti-explosion network made out

of two thin layers of stainless steel mesh. The heating element is placed inside this

stainless steel mesh

This mesh structure also provides

resistance against dust and other

suspended particulars and it only lets in

the gaseous elements from the

atmosphere. First one is the heating

element which is made out of nichrome

wire and other is the sensing element that

is made out of a platinum wire with a

coating of tin dioxide. Now we don't want you to cut and damage you sensor, so we

have done that for you, the below image shows the mesh decapped from the actual

sensor

The sensor looks like something like this

when the mesh is removed. The star-shaped

pins of the sensor are formed because of the

structure of the actual sensing and heating

element and it’s connected to the six legs of

the sensor. The black base of the sensor is

made with Bakelite to improve thermal

conductivity.

MQ-2 Combustible Gas Sensor with Arduino UNO – Connection Diagram

To work with the sensor we need to power the sensor first, for that we are using the

5V and GND pin of the Arduino UNO Board and we are connecting the output pin

of the sensor to A0 pin of the Arduino.

As shown in the above schematic we have connected an LED to digital PIN 6 of the

Arduino and the analog pin is connected to the A0 pin of the arduino, and the

ground pin is common in between the led and the sensor. We will program the

Arduino so that the brightness of the LED will change depending on the

concentration of the gas present in the atmosphere.

Arduino Code for Interfacing MQ-2 Gas Sensor Module

The code for the Arduino mq-2 gas sensor module is very simple and easy to

understand. Programmer is just reading the analog data out of the sensor and

changing the brightness of the LED according to the received data. Programmer is

only processing the analog data coming out of the sensor for the digital data.

// Sensor pins pin D6 LED output, pin A0 analog Input

#define ledPin 6

#define sensorPin A0

void setup() {

Serial.begin(9600);

pinMode(ledPin, OUTPUT);

digitalWrite(ledPin, LOW);

}

void loop() {

Serial.print("Analog output: ");

Serial.println(readSensor());

delay(500);

}

// This function returns the analog data to calling function

int readSensor() {

unsigned int sensorValue = analogRead(sensorPin); // Read the analog value from

sensor

unsigned int outputValue = map(sensorValue, 0, 1023, 0, 255);

 // map the 10-bit data to 8-bit data

if (outputValue > 65)

 analogWrite(ledPin, outputValue); // generate PWM signal

 else

 digitalWrite(ledPin, LOW);

 return outputValue; // Return analog moisture value

}

Arduino Motion Sensor

All objects (having temperature higher than absolute zero) emit radiations from the

generated heat. These radiations cannot be detected by a human eye. Hence,

electronic devices such as motion sensors, etc. are used for the detection of these

radiations.

PIR sensor

The Passive Infra-Red sensors or PIR sensors detect motion or movement of an

object that detect infrared radiations, such as the human body. Hence, the use of

sensors is very common.

The advantages of using a PIR sensor are listed below:

o Inexpensive

o Adjustable module

o Efficient

o Small in size

o Less power consumption

o It can detect motion in the dark as well as light.

The PIR sensor is shown below:

The PIR sensor has three terminals, which are listed below:

o VCC

o Digital Output

o GND (Ground)

Connect the Vcc terminal of the sensor to the 5V on

the Arduino board. The PIR's sensor output can be connected to any of the digital

pins on the Arduino board.

The applications of the PIR sensor are automation, security systems, etc. Such

sensors work great in detecting the entrance of a person in an area and leaving it.

The detection range of PIR sensors is from 5m to 12m.

Working of PIR Sensors

The working of the PIR sensor is

entirely based on detecting the IR

(Infra-Red) radiations, which are either

emitted or reflected by the objects. The

infrared radiations are detected by the

crystalline material present at the

centre of the sensor.

Structure of PIR Sensor

A round metal can is mounted on the

center with the rectangular crystal that

detects the IR radiations.

A ball like a lens present on some

sensors helps in enhancing the viewing angle.

The bottom part of the sensor contains many circuits

mounted on it, which is shown below:

Hardware Required

The components required for the project are listed

below:

o 1 x PIR motion sensor

o Arduino UNO R3 board (We can take any

Arduino board).

o Jump wires

o 1 x red LED (we can take LED of any color)

o 1 x 220 Ohm resistor

Principle

The movement of jumper present on the sensor on the L side will cause a change in

the state of the sensor whenever the motion is detected. Such a condition is defined

as a single trigger mode.

When the sensor resets the timer after every detection of motion, it is defined as

repeated trigger mode. The two potentiometers present on the sensor are called

as Sensitivity Potentiometer and Time Potentiometer. It should be restricted for

atleast 15 seconds in front of the PIR sensor for proper calibration in the output.

After 15 seconds, the sensor can easily detect movements.

If any movement is detected, the LED will be HIGH. If there is no such movement,

the output will be LOW.

Connection

The steps to set up the connection are listed below:

o Connect the Vcc terminal of the PIR sensor to the 5V pin of the Arduino

board.

o Connect the Output terminal of the PIR sensor to pin 8 of the Arduino board.

o Connect the GND terminal of the PIR sensor to the Ground pin of the

Arduino board.

o Connect the positive leg of the LED in series with 220 Ohm resistor to pin 13

of the Arduino board.

o Connect the negative terminal of the LED to the Ground pin of the Arduino

board.

Sketch

Consider the below code:

1. int LEDpin = 13; // LED pin

2. int PIRpin = 8; // The pin of Arduino connected to the PIR output

3. int PIRvalue = 0; // It specifies the status of PIR sensor

4. void setup() {

5. pinMode(LEDpin, OUTPUT);

6. pinMode(PIRpin, INPUT);

7. // the output from the sensor is considered as input for Arduino

8. Serial.begin(9600);

9. }

10. void loop()

11. {

12. PIRvalue = digitalRead(PIRpin);

13. if (PIRvalue == HIGH)

14. {

15. digitalWrite(LEDpin, HIGH);

16. // turn ON LED if the motion is detected

17. Serial.println("hello, I found you...heyyy..");

18. }

19. else

20. {

21. digitalWrite(LEDpin, LOW);

22. // LED will turn OFF if we have no motion

23. Serial.println("I cannot find you");

24. delay(1000);

25. }

26. }

The output will be based on the detection.

Arduino Light Sensor

A Light Sensor is a device that detects light. It generates an output signal that is

proportional to the intensity of light. A light sensor measures the radiant energy

present in the wide range of frequencies in the light spectrum. Some of the common

frequencies are infrared, visible and ultraviolet.

A Light Sensor is also called as Photo Sensor or Photo electric Sensor as it converts

light energy or photons in to electrical signals.

A photo resistor changes its resistance when light is incident on it. Hence, a photo

resistor is also called as Light Dependent Resistor or LDR.

When there is no light, the resistance of LDR is very high. When there is light

incident on the LDR, its resistance decreases.

Circuit Diagram

Hardware Required

• Arduino UNO

• Light Dependent Resistor (LDR)

• 100 KΩ POT

• Buzzer

Working of Arduino Light Sensor

Light Sensors are very useful devices in wide range of applications. One of the

common application is an automatic night lamp, where a light bulb is automatically

turned on as soon as the sun sets down. Another good application is solar tracker,

which tracks the sun and rotates the solar panel accordingly.

All these applications use a simple photo resistor or an LDR as the main sensing

device. Hence, in this project, we designed a simple light sensor that indicates when

the light is indicated. The working of the project is very simple and is explained

below.

All the connections are made as per the circuit diagram. The code for Arduino is

written and dumped in the board. When the LDR detects a light over certain

intensity, the Arduino will trigger the buzzer. When the intensity of light decreases,

the buzzer is turned off.

The 100 KΩ POT used in the voltage divider network can be used to adjust the

intensity levels at which the buzzer is triggered.

Code

 int sensorPin = A0; // select the input pin for the potentiometer

 //int ledPin = 13; // select the pin for the LED

 int sensorValue = 0; // variable to store the value coming from the sensor

 void setup() {

 // declare the ledPin as an OUTPUT:

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(11,OUTPUT);

 }

 void loop()

 {

 sensorValue=analogRead(sensorPin);

 if(sensorValue <= 14)

 digitalWrite(11,HIGH);

 else

 digitalWrite(11,LOW);

 Serial.println(sensorValue);

 delay(2);

 }

Applications

• Light Sensors are used in variety of applications.

• They can be used in security systems like burglar alarm systems where an

alarm is triggered when the light falling on the sensor is interrupted.

• Another common application of light sensor is night lamp. As long as the sun

light falls on the light sensor, the lamp will be switched off. When the sun

light starts decreasing and is completely off, the lamp will be turned on

automatically.

• One of the important applications of light sensors is in generation of efficient

solar energy. Light sensors are often used in Solar Tracking systems. The solar

panel will be rotated according to the movement of the sun and its intensity.

Arduino - DC Motor

There are three different type of motors −

• DC motor

• Servo motor

• Stepper motor

A DC motor (Direct Current motor) is the most

common type of motor. DC motors normally have just

two leads, one positive and one negative.

Do not drive the motor directly from Arduino board

pins. This may damage the board. Use a driver Circuit

or an IC.

Procedure

Follow the circuit diagram and make the connections as shown in the image given

below.

Precautions

Take the following precautions while

making the connections.

• First, make sure that the transistor is

connected in the right way. The flat

side of the transistor should face the

Arduino board as shown in the

arrangement.

• Second, the striped end of the diode

should be towards the +5V power

line according to the arrangement

shown in the image.

Spin ControlArduino Code

int motorPin = 3;

void setup() {

}

void loop() {

 digitalWrite(motorPin, HIGH);

}

Code to Note

The transistor acts like a switch, controlling the power to the motor. Arduino pin 3 is

used to turn the transistor on and off and is given the name 'motorPin' in the sketch.

Motor will spin in full speed when the Arduino pin number 3 goes high.

Motor Speed Control

Following is the schematic diagram of a DC motor, connected to the Arduino board.

Arduino Code

int motorPin = 9;

void setup() {

 pinMode(motorPin, OUTPUT);

 Serial.begin(9600);

 while (! Serial);

 Serial.println("Speed 0 to 255");

}

void loop() {

 if (Serial.available()) {

 int speed = Serial.parseInt();

 if (speed >= 0 && speed <= 255) {

 analogWrite(motorPin, speed);

 }

 }

}

Code to Note

The transistor acts like a switch, controlling the power of the motor. Arduino pin 3 is

used to turn the transistor on and off and is given the name 'motorPin' in the sketch.

When the program starts, it prompts you to give the values to control the speed of

the motor. You need to enter a value between 0 and 255 in the Serial Monitor.

The DC motor will spin with different speeds according to the value (0 to 250)

received via the serial port.

Interface L298N DC Motor Driver Module with Arduino

The L298N motor driver can control the speed and spinning direction of two DC

motors. In addition, it can control a bipolar stepper motor.

Controlling a DC Motor

Full control over a DC motor if one can control its speed and spinning direction. This

is possible by combining these two techniques.

• PWM – to control speed

• H-Bridge – to control the spinning direction

PWM – to control speed

The speed of a DC motor can be controlled by changing its input voltage. A widely

used technique to accomplish this is Pulse Width Modulation (PWM).

PWM is a technique in which the average

value of the input voltage is adjusted by

sending a series of ON-OFF pulses. This

average voltage is proportional to the

width of the pulses, which is referred to as

the Duty Cycle.

The higher the duty cycle, the higher the

average voltage applied to the DC motor,

resulting in an increase in motor speed. The

shorter the duty cycle, the lower the

average voltage applied to the DC motor,

resulting in a decrease in motor speed.

The image below shows PWM technique

with various duty cycles and average

voltages.

Pulse Width Modulation (PWM) Technique

H-Bridge – to control the spinning direction

The spinning direction of a DC motor can be

controlled by changing the polarity of its input

voltage. A widely used technique to accomplish

this is to use an H-bridge.

An H-bridge circuit is made up of four switches

arranged in a H shape, with the motor in the

center.

Closing two specific switches at the same time

reverses the polarity of the voltage applied to the

motor. This causes a change in the spinning

direction of the motor.

The following animation shows the working of

the H-bridge circuit.

L298N Motor Driver Chip

At the center of the module is a big, black chip with a chunky heat sink – the L298N.

The L298N chip contains two standard H-bridges capable of driving a pair of DC

motors, making it ideal for building a two-wheeled robotic platform.

The L298N motor driver has a supply range of 5V to 35V and is capable of 2A

continuous current per channel, so it works very well with most of our DC motors.

Technical Specifications

Motor output voltage 5V – 35V

Motor output voltage (Recommended) 7V – 12V

Logic input voltage 5V – 7V

Continuous current per channel 2A

Max Power Dissipation 25W

L298N Motor Driver Module Pinout

The L298N module has 11 pins that allow it to communicate with the outside world.

The pinout is as follows:

Power Pins: The L298N motor driver module receives power from a 3-pin, 3.5mm-

pitch screw terminal.

The L298N motor driver has two input power pins: VS and VSS.

VS pin powers the IC’s internal H-Bridge, which drives the motors. This pin accepts

input voltages ranging from 5 to 12V.

VSS is used to power the logic circuitry within the L298N IC, and can range between

5V and 7V.

GND is the common ground pin.

Output Pins : The output channels of the L298N motor driver, OUT1 and OUT2 for

motor A and OUT3 and OUT4 for motor B, are broken out to the edge of the module

with two 3.5mm-pitch screw terminals. You can connect two 5-12V DC motors to

these terminals.

Each channel on the module can supply up to 2A to the DC motor. The amount of

current supplied to the motor, however, depends on the capacity of the motor power

supply.

Direction Control Pins

The direction control pins allow you to control whether the motor rotates forward or

backward. These pins actually control the switches of the H-Bridge circuit within the

L298N chip.

Input1 Input2 Spinning Direction

Low(0) Low(0) Motor OFF

High(1) Low(0) Forward

Low(0) High(1) Backward

High(1) High(1) Motor OFF

.

Arduino Example Code

The sketch below will show you how to

control the speed and spinning direction of a

DC motor using the L298N Motor Driver.

The sketch moves the motor in one direction

for one revolution, then in the opposite

direction. There is also some acceleration

and deceleration involved.

When accelerating or decelerating the motor,

you may hear it humming, especially at

lower PWM values. This is normal; there is

nothing to be concerned about. This happens

because the DC motor requires a minimum

amount of voltage to operate.

// Motor A connections

int enA = 9;

int in1 = 8;

int in2 = 7;

// Motor B connections

int enB = 3;

int in3 = 5;

int in4 = 4;

void setup() {

 // Set all the motor control pins to outputs

 pinMode(enA, OUTPUT);

 pinMode(enB, OUTPUT);

 pinMode(in1, OUTPUT);

 pinMode(in2, OUTPUT);

 pinMode(in3, OUTPUT);

 pinMode(in4, OUTPUT);

 // Turn off motors - Initial state

 digitalWrite(in1, LOW);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, LOW);

}

void loop() {

 directionControl();

 delay(1000);

 speedControl();

 delay(1000);

}

// This function lets you control spinning direction of motors

void directionControl() {

 // Set motors to maximum speed

 // For PWM maximum possible values are 0 to 255

 analogWrite(enA, 255);

 analogWrite(enB, 255);

 // Turn on motor A & B

 digitalWrite(in1, HIGH);

 digitalWrite(in2, LOW);

 digitalWrite(in3, HIGH);

 digitalWrite(in4, LOW);

 delay(2000);

 // Now change motor directions

 digitalWrite(in1, LOW);

 digitalWrite(in2, HIGH);

 digitalWrite(in3, LOW);

 digitalWrite(in4, HIGH);

 delay(2000);

 // Turn off motors

 digitalWrite(in1, LOW);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, LOW);

}

// This function lets you control speed of the motors

void speedControl() {

 // Turn on motors

 digitalWrite(in1, LOW);

 digitalWrite(in2, HIGH);

 digitalWrite(in3, LOW);

 digitalWrite(in4, HIGH);

 // Accelerate from zero to maximum speed

 for (int i = 0; i < 256; i++) {

 analogWrite(enA, i);

 analogWrite(enB, i);

 delay(20);

 }

 // Decelerate from maximum speed to zero

 for (int i = 255; i >= 0; --i) {

 analogWrite(enA, i);

 analogWrite(enB, i);

 delay(20);

 }

 // Now turn off motors

 digitalWrite(in1, LOW);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, LOW);

}

Code Explanation:

The Arduino code is fairly simple. It does not require any libraries to work. The

sketch starts by declaring the Arduino pins that are connected to the L298N’s control

pins.

// Motor A connections

int enA = 9;

int in1 = 8;

int in2 = 7;

// Motor B connections

int enB = 3;

int in3 = 5;

int in4 = 4;

In the setup section of the code, all of the motor control pins, including the direction

and speed control pins, are configured as digital OUTPUT. And the direction control

pins are pulled LOW to initially disable both motors.

void setup() {

 // Set all the motor control pins to outputs

 pinMode(enA, OUTPUT);

 pinMode(enB, OUTPUT);

 pinMode(in1, OUTPUT);

 pinMode(in2, OUTPUT);

 pinMode(in3, OUTPUT);

 pinMode(in4, OUTPUT);

 // Turn off motors - Initial state

 digitalWrite(in1, LOW);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, LOW);

}

In the loop section of the code, Programmer call two user-defined functions with a

one-second delay.

void loop() {

 directionControl();

 delay(1000);

 speedControl();

 delay(1000);

}

These functions are:

• directionControl() – This function causes both motors to spin at full speed for

two seconds. It then reverses the spinning direction of the motors and spins

for two seconds. Finally, it stops the motors.

void directionControl() {

 // Set motors to maximum speed

 // For PWM maximum possible values are 0 to 255

 analogWrite(enA, 255);

 analogWrite(enB, 255);

 // Turn on motor A & B

 digitalWrite(in1, HIGH);

 digitalWrite(in2, LOW);

 digitalWrite(in3, HIGH);

 digitalWrite(in4, LOW);

 delay(2000);

 // Now change motor directions

 digitalWrite(in1, LOW);

 digitalWrite(in2, HIGH);

 digitalWrite(in3, LOW);

 digitalWrite(in4, HIGH);

 delay(2000);

 // Turn off motors

 digitalWrite(in1, LOW);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, LOW);

}

• speedControl() – This function uses the analogWrite() function to generate a

PWM signal that accelerates both motors from zero to maximum speed before

decelerating them back to zero. Finally, it stops the motors.

void speedControl() {

 // Turn on motors

 digitalWrite(in1, LOW);

 digitalWrite(in2, HIGH);

 digitalWrite(in3, LOW);

 digitalWrite(in4, HIGH);

 // Accelerate from zero to maximum speed

 for (int i = 0; i < 256; i++) {

 analogWrite(enA, i);

 analogWrite(enB, i);

 delay(20);

 }

 // Decelerate from maximum speed to zero

 for (int i = 255; i >= 0; --i) {

 analogWrite(enA, i);

 analogWrite(enB, i);

 delay(20);

 }

 // Now turn off motors

 digitalWrite(in1, LOW);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, LOW);

}

Arduino Servomotor using Potentiometer

The Potentiometer will be used to control the position of the servo motor. The

connection will be similar to the last servo motor project, except the added

Potentiometer.

Mini Servo Motor: It is defined as a

tiny motor that can approximately

rotate up to 180 degrees. It works

similar to the usual servo motor, but

smaller in size.

Principle

The project allows us to control the

shaft at angles between 0 and 180

degrees. Programmer can also set the

rotation of the shaft at different speeds.

Servo motor has three terminals signal,

power, and ground.

The power pin of the servo motor is

connected to the PWM pin of

the Arduino board. Here, we have

connected the power terminal to pin 9

of the Arduino UNO R3 board.

Structure of the project

The structure of the connection or project is shown below:

Consider the below code:

1. #include <Servo.h>

2. Servo myservo;

3. // It creates a servo object, which is used to control the servo

4. int potentioPIN = A0; // specified analog pin used to connect the potentiom

eter

5. int value; // value initialized to the variable to read the value from the anal

og pin

6. void setup()

7. {

8. myservo.attach(9); // servo connected to pin 9 of the Arduino board to the s

ervo object

9. }

10. void loop()

11. {

12. value = analogRead(potentioPIN);

13. // reads the value of the potentiometer (value between 0 and 1023)

14. value = map(value, 0, 1023, 0, 180);

15. // scale it to use it with the servo (value between 0 and 180)

16. myservo.write(value);

17. delay(1000); // it will wait for 1 second for the

18. // It will set the position of the motor according to the scaled value

19. value = map(value, 1023, 0, 180, 0);

20. // reads the value of the potentiometer (value between 1023 and 0)

21. myservo.write(value);

22. // scale it to use it with the servo (value between 180 and 0)

23. // the motor will rotate in reverse direction

24. delay(1000);

25. // delay time in milliseconds

26. //after 1500 millisecond it will again rotate from 0 to 180 degree

27. }

Connection

The steps to set up the connection are listed below:

o Connect the signal terminal of the servo motor to the 5V pin of the Arduino

board.

o Connect the power terminal of the servo motor to pin 9 of the Arduino board.

We can connect the power terminal of the motor to any digital PWM pin on

the Arduino board.

o Connect the ground terminal of the servo motor to the GND pin of the

Arduino board.

o One outer pin of the Potentiometer is connected to the ground (GND), and

other external pin is connected to 5V of the Arduino board.

o The middle terminal of the Potentiometer is connected to the analog input pin

A0 of the board.

Output

The shaft will rotate at angles between 0 and 180 degrees and again in the reverse

direction. Programmer can also modify the code by specifying it only in one

direction from 0 to 180 degrees. Hence, we can make changes according to the

requirements.

Arduino Stepper motor

The stepper motor does not require any feedback for its operation. It can be

controlled with high accuracy due to its design.

The series of magnets mounted on the shaft of the stepper motor are controlled by

the electromagnetic coils. These coils are negatively and positively charged in a

sequence, which makes the shaft to move in forward and backward in little steps.

Stepper motor working

The stepper motor can control the angular position of the rotor without a closed

feedback loop. For example, Consider a motor with six stator teeth and a rotor. It is

shown below:

A stepper motor with six stator teeth can be triggered with three different DC power

sources. The rotor in the stepper motor is made up of a stack of steel laminations. It

has different teeth compared to the rotor, which is four.

It is done so that one pair of rotor teeth at a time can be aligned easily with the

stator.

If we trigger or energize the coil A and B, the rotor would rotate. The above figure

signifies the step size is 30 degrees. We will energize coil B and C. After that, the coil

A will energize again. It means that the rotor moves to the position with the least

reluctance.

The position of the rotor, when coil A is energized is shown below:

The position of the rotor (moves 30 degrees), when coil B is energized is shown

below:

When both the coils are excited, the position of the rotor (in between) is shown

below:

The energizing of both the coils change the accuracy of the rotor from 30 degrees to

15 degrees. The common stepper motor type is the hybrid motor type.

Hardware Required

The required components are listed below:

o 1 x Arduino UNO R3 (We can use any Arduino board)

o 1 x Breadboard

o Jump Wires

o 1 x 10K Ohm Potentiometer

o 1 x Stepper motor

o 1 x power supply (according to the stepper)

o U2004 Darlington Array (For a Unipolar stepper)

o SN754410ne H-Bridge (for a bipolar stepper)

Connection diagram

Sketch

Consider the below code:

1. #include <Stepper.h> //library declared for the operation of stepper motor

2. const int stepsPERrevolution = 200; // We can change it according to the req

uired steps per revolution

3. // for our motor

4. // the initialization of pins 8 to 11 of stepper library

5. Stepper myStepper(stepsPERrevolution, 8, 9, 10, 11);

6. int CountofSTEP = 0; // number of steps the motor has taken

7. void setup()

8. {

9. Serial.begin(9600);

10. }

11. void loop()

12. {

13. // read the sensor value:

14. int ReadingINSensor = analogRead(A1);

15. // we can map it to a range from 0 to 100:

16. int SpeedOFmotor = map(ReadingINSensor, 0, 1023, 0, 100);

17. // to set the speed of the motor

18. if (SpeedOFmotor > 0)

19. {

20. myStepper.setSpeed(SpeedOFmotor);

21. // step 1/100 of a revolution

22. myStepper.step(stepsPERrevolution/ 100);

23. }

24. }

Procedure

The steps to establish the above connection are listed below:

o Connect the negative and positive terminal of the battery to the GND and 5V

pin of the Arduino board.

o One outer pin of the potentiometer is connected to ground (GND), and the

other external pin is connected to 5V of the Arduino board.

o The middle pin of the potentiometer is connected to the analog input pin A1

of the board.

o Connect the 8 to 11 digital pins of the Arduino board to the U2004 Darlington

Array, which is further connected to the motor.

o Connect other pins of the U2004 Darlington Array to the stepper motor, as

shown in the connection diagram.

Interfacing Relay with Arduino Uno

Relay Module

A relay is generally an electrically operated switch. The principle used by the relays

is an electromagnet to mechanically operate the switch. So basically it operates a

switch using an electromagnet which needs only less power like 5V, 12V or 24V.

Different kinds of relays are available in the market like SPDT, DPDT, SPST, 5V, 12V,

24V and with various high current/voltage driving capacity. In this tutorial we are

using a 5V relay module.

Pinouts

Relay Module

As shown in the above image :

• NO : Normally Open – This is the normally open terminal of the relay, means

if we don’t energise the relay there won’t be any contact with Common

terminal. But it will establish electrical contact with Common terminal once

the relay is energized.

• C : Common terminal

• NC : Normally Closed – This is the normally closed terminal of the relay,

means it will have electrical contact with common terminal whenever the

relay is not energised. And there won’t be electrical contact when the relay is

energised.

• GND : Ground Pin

• Signal : Actuation signal to control the relay.

• 5V VCC : Operating voltage for the relay.

Working

The principle behind the relay is electromagnetism, a switch operated by an

electromagnet. So, a low voltage is enough for an electromagnet to get activated.

This small voltage will be given to the relay by Arduino Uno or using some

intermediate driver if required.

NO, NC and COM Terminals

Usually SPDT (Singe Pole Double Throw) relays have 3 output terminals, these are

the 3 terminals of internal SPDT electromagnetic switch.

Common (COM) : This is the commonly terminal. This terminal will be connected to

either of other 2 terminals (NO or NC) based on the state of relay.

Normally Open (NO) : As the name indicates this is normally open terminal, ie. if

the relay is not energized (not ON), this pin will be open. We can say that the switch

is OFF by default and when the relay is energized it will become ON.

Normally Closed (NC) : As the name indicates it is normally closed terminal, ie. if

the relay is not energized (not ON), this pin will be closed. We can say that the

switch is ON by default and when the relay is energized it will become OFF.

Interfacing Relay with Arduino Uno

In the first phase of this tutorial we are controlling a normal LED for testing the

functionality of the relay as playing directly with AC needs to be very careful.

Components Required

• Arduino Uno

• LED

• 5V Relay Module

• Bread Board

• Jumper Wires

Circuit Diagram

Interfacing Relay Module with Arduino Uno

Description

• GND pin of 5V Relay – GND pin of Arduino

• Signal (Input) pin of 5V Relay – pin 7 of Arduino

• VCC pin of 5V Relay – 5V pin of Arduino

• Common pin of 5V Relay – pin 12 of Arduino

• NO pin of 5V Relay – Positive pin of the LED

• GND pin of LED – GND pin of Arduino

Program

int relay_pin = 7;

int led_pin = 12;

void setup()

{

 pinMode(relay_pin,OUTPUT);

 pinMode(led_pin,OUTPUT);

 digitalWrite(led_pin,HIGH);

}

void loop()

{

 digitalWrite(relay_pin,HIGH);

 delay(2000);

 digitalWrite(relay_pin,LOW);

 delay(2000);

}

Unit IV

ESP8266 NodeMCU

The ESP8266 is a Wi-Fi System on a Chip (SoC) produced by Espressif Systems. It’s

great for IoT and Home Automation projects.

Introducing the ESP8266 NodeMCU

The ESP8266 is a low-cost Wi-Fi chip developed by Espressif Systems. It can be used

as a standalone device, or as a UART to Wi-Fi adaptor to allow other

microcontrollers to connect to a Wi-Fi network. For example, ESP8266 connected to

an Arduino to add Wi-Fi capabilities to Arduino board.

Advantages of ESP8266:

▪ Low-cost: ESP8266 boards starting at $3 (or less) depending on the model.

▪ Low-power: the ESP8266 consumes very little power and can even go

into deep sleep mode to consume less power;

▪ Wi-Fi: the ESP8266 can generate its own Wi-Fi network (access point) or

connect to other Wi-Fi networks (station) to get access to the internet. It can

also act as a web server.

▪ Compatible with the Arduino “programming language”: those that are

already familiar with programming the Arduino board, they can program the

ESP8266 in the Arduino style.

▪ Compatible with MicroPython: one can program the ESP8266 with

MicroPython firmware, which is a re-implementation of Python 3 targeted for

microcontrollers and embedded systems.

ESP8266 Technical Details:

For more details about the specs of the ESP8266, check the following list:

ESP8266-12E Wi-Fi chip

▪ Processor: L106 32-bit RISC microprocessor core based on the Tensilica

Diamond Standard 106Micro running at 80 or 160 MHz

▪ Memory:

▪ 32 KiB instruction RAM

▪ 32 KiB instruction cache RAM

▪ 80 KiB user-data RAM

▪ 16 KiB ETS system-data RAM

▪ External QSPI flash: up to 16 MiB is supported (512 KiB to 4 MiB typically

included)

▪ IEEE 802.11 b/g/n Wi-Fi

▪ Integrated TR switch, balun, LNA, power amplifier, and matching network

▪ WEP or WPA/WPA2 authentication or open networks

▪ 17 GPIO pins

▪ Serial Peripheral Interface Bus (SPI)

▪ I²C (software implementation)

▪ I²S interfaces with DMA (sharing pins with GPIO)

▪ UART on dedicated pins, plus a transmit-only UART can be enabled on

GPIO2

▪ 10-bit ADC (successive approximation ADC)

ESP8266 Versions

There are several versions of the ESP8266 modules as shown in the picture below.

The ESP-01 and ESP-12E are the most popular versions.

ESP8266 NodeMCU Development Boards

ESP8266 NodeMCU come with all the needed circuitry to apply power, upload code,

easy access to the GPIOs to connect sensors and actuators, an antenna for the Wi-Fi

signal, and other useful features.

▪ USB-to-UART interface and voltage regulator circuit. Most full-featured

development boards have these two features. This is important to easily

connect the ESP8266 to computer to upload code and apply power.

▪ BOOT and RESET/EN buttons to put the board in flashing mode or reset

(restart) the board.

▪ Pin configuration and the number of pins. To properly use the ESP8266 in

your projects, you need to have access to the board pinout (like a map that

shows which pin corresponds to which GPIO and its features). So make sure

you have access to the pinout of the board you’re getting. Additionally, some

boards have more accessible GPIOs than others. That’s a factor you should

take into account depending on your project features.

▪ Size. There is a wide variety of ESP8266 development boards with different

sizes. Some boards benefit from a small form factor, which might be very

practical depending on your project features. Usually, smaller boards have a

small number of available GPIOs like the ESP-01.

▪ Antenna connector. Most boards come with an onboard antenna for the Wi-Fi

signal. Some boards come with an antenna connector to optionally connect an

external antenna. Adding an external antenna increases your Wi-Fi range.

ESP8266 NodeMCU Pinout

The most widely used ESP8266 NodeMCU development boards are the ESP8266-12E

NodeMCU Kit. A pinout is like a map that shows which pin corresponds to which

GPIO and its features.

Power Pins

Usually, all boards come with power pins: 3V3, GND, and VIN. Programmer can use

these pins to power the board, or to get power for other peripherals.

General Purpose Input Output Pins (GPIOs)

One important thing to notice about the ESP8266 is that the GPIO number doesn’t

match the label on the board silkscreen. For example, D0 corresponds to GPIO16 and

D1 corresponds to GPIO5. When programming boards using Arduino IDE,

Programmer must use the GPIO number and not the number on the silkscreen. This

applies to most ESP8266 boards.

The ESP8266 peripherals include:

▪ 17 GPIOs (usually not all GPIOs are accessible on the ESP8266 development

boards)

▪ SPI

▪ I2C (implemented on software)

▪ I2S interfaces with DMA

▪ UART

▪ 10-bit ADC

ESP-12E NodeMCU Kit Pinout

The following picture shows an overview of the ESP-12E NodeMCU Kit pinout:

Program the ESP8266

There are many different ways to program the ESP8266 using different

programming languages: Arduino C/C++ using the Arduino core for the

ESP32, Micropython, LUA, and others.

Programming ESP8266 with Arduino IDE

To program the boards, Programmer need an IDE to write the code. Arduino IDE

works well and is simple and intuitive to use for beginners.

Installing the ESP8266 NodeMCU in Arduino IDE

To be able to program the ESP8266 NodeMCU using Arduino IDE, programmer

need to add support for the ESP8266 boards. Follow the next steps:

1. Go to File > Preferences.

2. Enter the following into the “Additional Board Manager URLs” field.

https://arduino.esp8266.com/stable/package_esp8266com_index.json

See the figure below. Then, click the “OK” button.

Note: if programmer already has the ESP32 boards URL, they can separate the URLs

with a comma as follows:

https://dl.espressif.com/dl/package_esp32_index.json,

http://arduino.esp8266.com/stable/package_esp8266com_index.json

3. Open the Boards Manager. Go to Tools > Board >Boards Manager…

4. Search for ESP8266 and install the “ESP8266 by ESP8266 Community“.

 That’s it. It will be installed after a few seconds.

After this, restart the Arduino IDE.

Then, go to Tools > Board and check that you have ESP8266 boards available.

Now, programmer is ready to start programming your ESP8266 using Arduino IDE.

ESP8266WiFi library

ESP8266 is all about Wi-Fi. If you are eager to connect your new ESP8266 module to

a Wi-Fi network to start sending and receiving data, this is a good place to start. If

you are looking for more in depth details of how to program specific Wi-Fi

networking functionality, you are also in the right place.

Introduction

The Wi-Fi library for ESP8266 has been developed based on ESP8266 SDK, using the

naming conventions and overall functionality philosophy of the Arduino WiFi

library. Over time, the wealth of Wi-Fi features ported from ESP8266 SDK to esp8266

/ Arduino outgrew Arduino WiFi library and it became apparent that we would

need to provide separate documentation on what is new and extra.

This documentation will walk you through several classes, methods and properties

of the ESP8266WiFi library. If you are new to C++ and Arduino, don’t worry. We

will start from general concepts and then move to detailed description of members

of each particular class including usage examples.

The scope of functionality offered by the ESP8266WiFi library is quite extensive and

therefore this description has been broken up into separate documents marked with

:arrow_right:.

Quick Start

Hopefully, you are already familiar how to load the Blink.ino sketch to an ESP8266

module and get the LED blinking. If not, please use this tutorial by Adafruit

or another great tutorial developed by Sparkfun.

To hook up the ESP module to Wi-Fi (like hooking up a mobile phone to a hot spot),

you need only a couple of lines of code:

#include <ESP8266WiFi.h>

void setup()

{

 Serial.begin(115200);

 Serial.println();

 WiFi.begin("network-name", "pass-to-network");

 Serial.print("Connecting");

 while (WiFi.status() != WL_CONNECTED)

https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino

 {

 delay(500);

 Serial.print(".");

 }

 Serial.println();

 Serial.print("Connected, IP address: ");

 Serial.println(WiFi.localIP());

}

void loop() {}

In the line WiFi.begin("network-name", "pass-to-network") replace network-

name and pass-to-network with the name and password of the Wi-Fi network you

would like to connect to. Then, upload this sketch to ESP module and open the serial

monitor. You should see something like:

How does it work? In the first line of the sketch, #include <ESP8266WiFi.h> we are

including the ESP8266WiFi library. This library provides ESP8266 specific Wi-Fi

routines that we are calling to connect to the network.

The actual connection to Wi-Fi is initialized by calling:

WiFi.begin("network-name", "pass-to-network");

The connection process can take couple of seconds and we are checking for whether

this has completed in the following loop:

while (WiFi.status() != WL_CONNECTED)

{

 delay(500);

 Serial.print(".");

}

The while() loop will keep looping as long as WiFi.status() is other

than WL_CONNECTED. The loop will exit only if the status changes

to WL_CONNECTED.

The last line will then print out the IP address assigned to the ESP module by DHCP:

Serial.println(WiFi.localIP());

Note: if connection is established, and then lost for some reason, ESP will

automatically reconnect to the last used access point once it is again back on-line.

This will be done automatically by Wi-Fi library, without any user intervention.

Devices that connect to Wi-Fi networks are called stations (STA). Connection to Wi-

Fi is provided by an access point (AP), that acts as a hub for one or more stations.

The access point on the other end is connected to a wired network. An access point is

usually integrated with a router to provide access from a Wi-Fi network to the

internet. Each access point is recognized by a SSID (Service Set IDentifier), that

essentially is the name of network you select when connecting a device (station) to

the Wi-Fi.

ESP8266 modules can operate as a station, so we can connect it to the Wi-Fi network.

It can also operate as a soft access point (soft-AP), to establish its own Wi-Fi network.

When the ESP8266 module is operating as a soft access point, we can connect other

stations to the ESP module. ESP8266 is also able to operate as both a station and a

soft access point mode. This provides the possibility of building e.g. mesh networks.

The ESP8266WiFi library provides a wide collection of C++ methods (functions)

and properties to configure and operate an ESP8266 module in station and / or soft

access point mode. They are described in the following chapters.

Class Description

The ESP8266WiFi library is broken up into several classes. In most of cases, when

writing the code, the user is not concerned with this classification. We are using it to

break up description of this library into more manageable pieces.

Station

Station (STA) mode is used to get the ESP module connected to a Wi-Fi network

established by an access point.

Station class has several features to facilitate the management of a Wi-Fi connection.

In case the connection is lost, the ESP8266 will automatically reconnect to the last

used access point, once it is available again. The same happens on module reboot.

This is possible since ESP saves the credentials to the last used access point in flash

(non-volatile) memory. Using the saved data ESP will also reconnect if sketch has

been changed but code does not alter the Wi-Fi mode or credentials.

Station Class documentation

Check out separate section with examples.

Soft Access Point

An access point (AP) is a device that provides access to a Wi-Fi network to other

devices (stations) and connects them to a wired network. The ESP8266 can provide

similar functionality, except it does not have interface to a wired network. Such

mode of operation is called soft access point (soft-AP). The maximum number of

stations that can simultaneously be connected to the soft-AP can be set from 0 to 8,

but defaults to 4.

The soft-AP mode is often used and an intermediate step before connecting ESP to a

Wi-Fi in a station mode. This is when SSID and password to such network is not

known upfront. ESP first boots in soft-AP mode, so we can connect to it using a

laptop or a mobile phone. Then we are able to provide credentials to the target

network. Then, the ESP is switched to the station mode and can connect to the target

Wi-Fi.

Another handy application of soft-AP mode is to set up mesh networks. The ESP can

operate in both soft-AP and Station mode so it can act as a node of a mesh network.

Soft Access Point Class documentation

Check out the separate section with examples.

Scan

To connect a mobile phone to a hot spot, you typically open Wi-Fi settings app, list

available networks and pick the hot spot you need. Then enter a password (or not)

and you are in. You can do the same with the ESP. Functionality of scanning for, and

listing of available networks in range is implemented by the Scan Class.

Scan Class documentation

Check out the separate section with examples.

Client

The Client class creates clients that can access services provided by servers in order

to send, receive and process data.

Check out the separate section with list of functions

WiFi Multi

ESP8266WiFiMulti.h can be used to connect to a WiFi network with strongest WiFi

signal (RSSI). This requires registering one or more access points with SSID and

password. It automatically switches to another WiFi network when the WiFi

connection is lost.

Example:

#include <ESP8266WiFiMulti.h>

ESP8266WiFiMulti wifiMulti;

// WiFi connect timeout per AP. Increase when connecting takes longer.

const uint32_t connectTimeoutMs = 5000;

void setup()

{

 // Set in station mode

 WiFi.mode(WIFI_STA);

 // Register multi WiFi networks

 wifiMulti.addAP("ssid_from_AP_1", "your_password_for_AP_1");

 wifiMulti.addAP("ssid_from_AP_2", "your_password_for_AP_2");

 wifiMulti.addAP("ssid_from_AP_3", "your_password_for_AP_3");

}

void loop()

{

 // Maintain WiFi connection

 if (wifiMulti.run(connectTimeoutMs) == WL_CONNECTED) {

 ...

 }

}

BearSSL Client Secure and Server Secure

BearSSL::WiFiClientSecure and BearSSL::WiFiServerSecure are extensions of the

standard Client and Server classes where connection and data exchange with servers

and clients using secure protocol. It supports TLS 1.2 using a wide variety of modern

ciphers, hashes, and key types.

Secure clients and servers require significant amounts of additional memory and

processing to enable their cryptographic algorithms. In general, only a single secure

client or server connection at a time can be processed given the little RAM present on

the ESP8266, but there are methods of reducing this RAM requirement detailed in

the relevant sections.

BearSSL::WiFiClientSecure contains more information on using and configuring TLS

connections.

BearSSL::WiFiServerSecure discusses the TLS server mode available. Please read and

understand the BearSSL::WiFiClientSecure first as the server uses most of the same

concepts.

Check out the separate section with examples .

Server

The Server Class creates servers that provide functionality to other programs or

devices, called clients.

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-client-secure-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-server-secure-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-client-secure-class.html

Clients connect to sever to send and receive data and access provided functionality.

UDP

The UDP Class enables the User Datagram Protocol (UDP) messages to be sent and

received. The UDP uses a simple “fire and forget” transmission model with no

guarantee of delivery, ordering, or duplicate protection. UDP provides checksums

for data integrity, and port numbers for addressing different functions at the source

and destination of the datagram.

Generic

There are several functions offered by ESP8266’s SDK and not present in Arduino

WiFi library. If such function does not fit into one of classes discussed above, it will

likely be in Generic Class. Among them is handler to manage Wi-Fi events like

connection, disconnection or obtaining an IP, Wi-Fi mode changes, functions to

manage module sleep mode, hostname to an IP address resolution, etc.

Diagnostics

There are several techniques available to diagnose and troubleshoot issues with

getting connected to Wi-Fi and keeping connection alive.

Check Return Codes

Almost each function described in chapters above returns some diagnostic

information.

Such diagnostic may be provided as a simple boolean type true or false to indicate

operation result. You may check this result as described in examples, for instance:

Serial.printf("Wi-Fi mode set to WIFI_STA %s\n", WiFi.mode(WIFI_STA) ? "" :

"Failed!");

Some functions provide more than just a binary status information. A good example

is WiFi.status().

Serial.printf("Connection status: %d\n", WiFi.status());

This function returns following codes to describe what is going on with Wi-Fi

connection:

• 0 : WL_IDLE_STATUS when Wi-Fi is in process of changing between statuses

• 1 : WL_NO_SSID_AVAILin case configured SSID cannot be reached

• 3 : WL_CONNECTED after successful connection is established

• 4 : WL_CONNECT_FAILED if connection failed

• 6 : WL_CONNECT_WRONG_PASSWORD if password is incorrect

• 7 : WL_DISCONNECTED if module is not configured in station mode

It is a good practice to display and check information returned by functions.

Application development and troubleshooting will be easier with that.

Use printDiag

There is a specific function available to print out key Wi-Fi diagnostic information:

WiFi.printDiag(Serial);

A sample output of this function looks as follows:

Mode: STA+AP

PHY mode: N

Channel: 11

AP id: 0

Status: 5

Auto connect: 1

SSID (10): sensor-net

Passphrase (12): 123!$#0&*esP

BSSID set: 0

Use this function to provide snapshot of Wi-Fi status in these parts of application

code, that you suspect may be failing.

Enable Wi-Fi Diagnostic

By default the diagnostic output from Wi-Fi libraries is disabled when you

call Serial.begin. To enable debug output again, call Serial.setDebugOutput(true). To

redirect debug output to Serial1 instead, call Serial1.setDebugOutput(true).

Connectingscandone

state: 0 -> 2 (b0)

state: 2 -> 3 (0)

state: 3 -> 5 (10)

add 0

aid 1

cnt

connected with sensor-net, channel 6

dhcp client start...

chg_B1:-40

...ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

.Connected, IP address: 192.168.1.10

The same sketch without Serial.setDebugOutput(true) will print out only the

following:

Connecting....

Connected, IP address: 192.168.1.10

To Create ESP8266 Web Server

In this tutorial, I will show How to Build a Simple ESP8266 Web Server. This

ESP8266 NodeMCU standalone Web Server can be accessed by any device in the

local network that has a web browser (Mobiles, Laptops, Tablets). To demonstrate

the working of the web server is ESP8266, we will create a web page which controls

two LEDs.

Outline

What is a Web Server?

A Web Server is combination of Hardware and Software which is responsible for

maintaining, fetching and serving web pages to Web Clients. The information in the

web pages can be Text in the form of HTML Documents, Images, Video,

Applications etc.

Web Browsers in your laptops and mobile phones are web clients. If you observed

the terms Web Server and Web Client then yes, this type of communication is called

as Client – Server Model.

https://www.electronicshub.org/wp-content/uploads/2021/02/ESP-Web-Server-Intro.jpg
https://www.electronicshub.org/wp-content/uploads/2021/02/Web-Client-Server-Model.jpg

The communication between Client and Server is implemented using a special

protocol called HTTP or Hyper Text Transfer Protocol. In this type of

communication, the Web Client makes a request for information from the server

using HTTP. The Web Server, which is always waiting (listening) for a request,

responds to the client’s request with appropriate web page.

If the requested page is not found, then the server responds with HTTP 404 Error.

Requirements of ESP8266 Web Server

With the brief introduction of Web Servers in general, we will now understand what

are the requirement of a standalone ESP8266 Web Server. An ESP8266 Web Server

must contain a web page in the form of HTML Text.

When a client, like a web browser in a mobile phone, sends a request for that web

page over HTTP, the web server in ESP8266 must respond with the web page.

Additionally, when the client performs any operations, like clicking on a button, the

server should respond with appropriate actions (like turning ON / OFF an LED).

Wi-Fi Modes of Operation of ESP8266

Before proceeding with creating a Web Server for ESP8266, we will take a look at the

different operating modes of Wi-Fi in ESP8266. If you remember the How to Connect

ESP8266 to WiFi tutorial, I already discussed about these modes. But for this web

server tutorial, we will revise them once again.

Basically, the ESP8266 Wi-Fi Module operates in three WiFi operating modes. They

are:

https://www.electronicshub.org/wp-content/uploads/2021/02/ESP8266-Web-Server-Requirements.jpg

• Station Mode (STA)

• Soft Access Point Mode (AP)

• Station + Soft AP Mode

In station mode, the ESP8266 Module connects to an existing WiFi Network, which is

setup by a Wireless Router, just like our Mobile Phones and Laptops.

The ESP8266 Wi-Fi Module connects to a Wi-Fi Network of Router using the router’s

SSID and Password and the router assigns the local IP Address for ESP8266.

Coming to Access Point Mode, the ESP8266 Module creates its own WiFi Network

like a Wireless Router, so that other stations like Mobile Phones, Laptops and even

other ESP8266 modules (in STA Mode) can connect to that network.

Since ESP8266 doesn’t have a Wired Ethernet connectivity to internet, this AP Mode

is called as Soft AP Mode. While configuring ESP8266 in AP Mode, you have to set

the SSID and Password for the network, so that other devices can connect to that

network using those credentials.

https://www.electronicshub.org/wp-content/uploads/2021/02/ESP8266-STA-Mode.jpg

Station + Soft AP is a combination of Station Mode and Soft AP Mode. In this, the

ESP8266 acts as both the Station as well as an Access Point.

Which Mode to use for Creating Web Server?

You can configure ESP8266 Wi-Fi Module either in Station Mode or in Access point

Mode to create a web server. The difference is that in station mode, all the devices

(Mobiles, laptops, ESP8266, etc.) are connected to Wireless Router’s WiFi Network

and IP Address to all the devices (including the Web Server of ESP8266) is assigned

by the router.

Using this IP Address, clients can access the Web Page. Additionally, the clients do

not lose internet connectivity from the Router.

But if we create Web Server for ESP8266 in AP Mode, then clients must connect to

the network provided by ESP8266 using its own SSID and Password in order to

access the Web Pages. Since it is a soft AP Mode, clients do not have internet

connectivity.

Creating ESP8266 Web Server either in Station Mode or in Soft AP Mode is very

similar except the configuration part of the ESP8266.

In this tutorial, I will show you how to create a Web Server on ESP8266 configured

in Station Mode (STA).

NodeMCU ESP8266 Web Server

https://www.electronicshub.org/wp-content/uploads/2021/02/ESP8266-AP-Mode.jpg

Apart from creating the web server on ESP8266 and accessing it on clients, we will

also see how Server responds to different requests for clients by controlling two

LEDs connected to GPIO Pins of ESP8266 NodeMCU Board.

To demonstrate this, I connected two 5mm LEDs to GPIO4 and GPIO5 of ESP8266

through respective current limiting resistors (220Ω). GPIO4 is labelled D2 and GPIO5

is labelled D1 on NodeMCU.

Code

Coming to the important and interesting stuff, the actual code for Web Server on

ESP8266. It is just an HTML Code with some text, couple of buttons and some

stylization.

The following block shows the complete code for ESP8266 Web Server. I will explain

the code in the next section.

#include <ESP8266WiFi.h>
#define gpio4LEDPin 4 /* One LED connected to GPIO4 - D2 */
#define gpio5LEDPin 5 /* One LED connected to GPIO5 - D1 */
const char* ssid = "ESP8266-WiFi"; /* Add your router's SSID */
const char* password = "12345678"; /*Add the password */

https://www.electronicshub.org/wp-content/uploads/2021/02/ESP8266-Web-Server-Circuit.jpg

int gpio4Value;
int gpio5Value;
WiFiServer espServer(80); /* Instance of WiFiServer with port number 80 */
/* 80 is the Port Number for HTTP Web Server */
void setup()
{
 Serial.begin(115200); /* Begin Serial Communication with 115200 Baud Rate */
 /* Configure GPIO4 and GPIO5 Pins as OUTPUTs */
 pinMode(gpio4LEDPin, OUTPUT);
 pinMode(gpio5LEDPin, OUTPUT);
 /* Set the initial values of GPIO4 and GPIO5 as LOW*/
 /* Both the LEDs are initially OFF */
 digitalWrite(gpio4LEDPin, LOW);
 digitalWrite(gpio5LEDPin, LOW);

 Serial.print("\n");
 Serial.print("Connecting to: ");
 Serial.println(ssid);
 WiFi.mode(WIFI_STA); /* Configure ESP8266 in STA Mode */
 WiFi.begin(ssid, password); /* Connect to Wi-Fi based on above SSID and

Password */
 while(WiFi.status() != WL_CONNECTED)
 {
 Serial.print("*");
 delay(500);
 }
 Serial.print("\n");
 Serial.print("Connected to Wi-Fi: ");
 Serial.println(WiFi.SSID());
 delay(100);
 /* The next four lines of Code are used for assigning Static IP to ESP8266 */
 /* Do this only if you know what you are doing */
 /* You have to check for free IP Addresses from your Router and */
 /* assign it to ESP8266 */
 /* If you are confirtable with this step, please un-comment the next four lines *
 /* if not, leave it as it is and proceed */
 //IPAddress ip(192,168,1,6);
 //IPAddress gateway(192,168,1,1);
 //IPAddress subnet(255,255,255,0);
 //WiFi.config(ip, gateway, subnet);

 //delay(2000);
 Serial.print("\n");
 Serial.println("Starting ESP8266 Web Server...");
 espServer.begin(); /* Start the HTTP web Server */
 Serial.println("ESP8266 Web Server Started");
 Serial.print("\n");
 Serial.print("The URL of ESP8266 Web Server is: ");
 Serial.print("http://");
 Serial.println(WiFi.localIP());
 Serial.print("\n");
 Serial.println("Use the above URL in your Browser to access ESP8266 Web

Server\n");
}
void loop()
{
 WiFiClient client = espServer.available(); /* Check if a client is available */
 if(!client)
 {
 return;
 }
 Serial.println("New Client!!!");
 String request = client.readStringUntil('\r'); /* Read the first line of the request

from client */
 Serial.println(request); /* Print the request on the Serial monitor */
 /* The request is in the form of HTTP GET Method */
 client.flush();
 /* Extract the URL of the request */
 /* We have four URLs. If IP Address is 192.168.1.6 (for example),
 * then URLs are:
 * 192.168.1.6/GPIO4ON and its request is GET /GPIO4ON HTTP/1.1
 * 192.168.1.6/GPIO4OFF and its request is GET /GPIO4OFF HTTP/1.1
 * 192.168.1.6/GPIO5ON and its request is GET /GPIO5ON HTTP/1.1
 * 192.168.1.6/GPIO4OFF and its request is GET /GPIO5OFF HTTP/1.1
 */
 /* Based on the URL from the request, turn the LEDs ON or OFF */
 if (request.indexOf("/GPIO4ON") != -1)
 {
 Serial.println("GPIO4 LED is ON");
 digitalWrite(gpio4LEDPin, HIGH);
 gpio4Value = HIGH;

 }
 if (request.indexOf("/GPIO4OFF") != -1)
 {
 Serial.println("GPIO4 LED is OFF");
 digitalWrite(gpio4LEDPin, LOW);
 gpio4Value = LOW;
 }
 if (request.indexOf("/GPIO5ON") != -1)
 {
 Serial.println("GPIO5 LED is ON");
 digitalWrite(gpio5LEDPin, HIGH);
 gpio5Value = HIGH;
 }
 if (request.indexOf("/GPIO5OFF") != -1)
 {
 Serial.println("GPIO5 LED is OFF");
 digitalWrite(gpio5LEDPin, LOW);
 gpio5Value = LOW;
 }
 /* HTTP Response in the form of HTML Web Page */
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println(); // IMPORTANT
 client.println("<!DOCTYPE HTML>");
 client.println("<html>");
 client.println("<head>");
 client.println("<meta name=\"viewport\" content=\"width=device-width,

initial-scale=1\">");
 client.println("<link rel=\"icon\" href=\"data:,\">");
 /* CSS Styling for Buttons and Web Page */
 client.println("<style>");
 client.println("html { font-family: Courier New; display: inline-block; margin:

0px auto; text-align: center;}");
 client.println(".button {border: none; color: white; padding: 10px 20px; text-

align: center;");
 client.println("text-decoration: none; font-size: 25px; margin: 2px; cursor:

pointer;}");
 client.println(".button1 {background-color: #13B3F0;}");
 client.println(".button2 {background-color: #3342FF;}");
 client.println("</style>");

 client.println("</head>");
 /* The main body of the Web Page */
 client.println("<body>");
 client.println("<h2>ESP8266 Web Server</h2>");
 if(gpio4Value == LOW)
 {
 client.println("<p>GPIO4 LED Status: OFF</p>");
 client.print("<p><button class=\"button

button1\">Click to turn ON</button></p>");
 }
 else
 {
 client.println("<p>GPIO4 LED Status: ON</p>");
 client.print("<p><button class=\"button

button2\">Click to turn OFF</button></p>");
 }

 if(gpio5Value == LOW)
 {
 client.println("<p>GPIO5 LED Status: OFF</p>");
 client.print("<p><button class=\"button

button1\">Click to turn ON</button></p>");
 }
 else
 {
 client.println("<p>GPIO5 LED Status: ON</p>");
 client.print("<p><button class=\"button

button2\">Click to turn OFF</button></p>");
 }

 client.println("</body>");
 client.println("</html>");
 client.print("\n");

 delay(1);
 /* Close the connection */
 client.stop();
 Serial.println("Client disconnected");
 Serial.print("\n");
}

Modify and Upload Code

In lines 6 and 7 of above code, you have to make the modifications as per your Wi-Fi

Network Settings. These are the SSID and Password of the Wi-Fi Network.

const char* ssid = "ESP8266-WiFi"; /* Add your router's SSID */

const char* password = "12345678"; /*Add the password */

After making necessary modifications, make the necessary connections as per the

circuit diagram, connect the NodeMCU to the computer, select the right COM Port

and upload the code.

If you are new to ESP8266 and NodeMCU, then the Getting Started with NodeMCU

tutorial will help you in configuring Arduino IDE.

Open the Serial Monitor and ESP8266 NodeMCU will print some important

information like the progress of Wi-Fi Connection, IP Address and URL of Web

Server (which is essentially the IP Address of the ESP8266).

So, in my case the IP Address of ESP8266 is 192.168.1.6.

Accessing the ESP8266 Web Server from Clients

Open a Web Browser either in a laptop or mobile phone and type the IP Address.

This is the moment of truth. If everything goes well, then you should be able to see a

simple web page hosted by the ESP8266 Web Server.

https://www.electronicshub.org/wp-content/uploads/2021/02/NodeMCU-Web-Server-Serial-1.jpg

The following is a screenshot of Chrome Web Browser on a laptop accessing the Web

Server of ESP8266.

As you can see from the image, the web page displays a main header text, followed

by status of the LED connected to GPIO4. This is followed by a Button, which can be

used to turn ON or OFF the LED. The same stuff again for GPIO5 (status followed

by Button).

Now, if I click on the first button, the LED connected to GPIO4 will turn ON, the

status is updated in the web page, the text and color of the Button is also changed.

If you take a look at the Serial Monitor, every time a client tries to connect (or send a

request), some key information is printed on the serial monitor. I will explain about

this information (this is actually a part of request from client) in the next section.

https://www.electronicshub.org/wp-content/uploads/2021/02/NodeMCU-Web-Server-Client-1.jpg
https://www.electronicshub.org/wp-content/uploads/2021/02/NodeMCU-Web-Server-Client-2.jpg

Next, I tried the same thing on a Mobile Phone. It works perfectly.

NOTE: All the clients i.e., mobiles, laptops, etc., must be connected to the same

network as the ESP8266 Module.

How ESP8266 NodeMCU Web Server Works?

Let us now try to understand How ESP8266 Web Server works by analyzing the

code. I will explain all the important parts of the code and leave the simple stuff (like

turning ON LED) for your exploration.

Initial Setup

First, you need to include only one header file related to the ESP8266WiFi Library.

#include <ESP8266WiFi.h>

Next, assign the GPIO pins to connect two LEDs. I used GPIO4 and GPIO5.

#define gpio4LEDPin 4

#define gpio5LEDPin 5

As I mentioned earlier, add the SSID and Password of your Wi-Fi Network here.

const char* ssid = "ENTER_YOUR_SSID";

const char* password = "ENTER_YOUR_PASSWORD";

Since we want to create an HTTP Server, we have to setup the Web Server with port

number 80 (this is the default port for HTTP Servers).

WiFiServer espServer(80);

Next, in the setup() function, begin serial communication with baud rate of 115200

and configure the GPIO pins as OUTPUT. Also initialize the GPIO pins to LOW.

https://www.electronicshub.org/wp-content/uploads/2021/02/NodeMCU-Web-Server-Client-3.jpg

Serial.begin(115200);

pinMode(gpio4LEDPin, OUTPUT);

pinMode(gpio5LEDPin, OUTPUT);

digitalWrite(gpio4LEDPin, LOW);

digitalWrite(gpio5LEDPin, LOW);

The next few lines of code are used to begin the Wi-Fi Connection.

WiFi.mode(WIFI_STA);

WiFi.begin(ssid, password);

while(WiFi.status() != WL_CONNECTED)

{

Serial.print("*");

delay(500);

}

After successful connection, start the Web Server and print the IP Address of

ESP8266. This IP address also acts as URL for the Web Server, which must be entered

in the client’s web browser.

Serial.println("Starting ESP8266 Web Server...");

espServer.begin();

Serial.println("ESP8266 Web Server Started");

Serial.print("\n");

Serial.print("The URL of ESP8266 Web Server is: ");

Serial.print("https://");

Serial.println(WiFi.localIP());

This completes the initial setup of the Web Server.

Waiting for Client and Responding

Next, in the loop() function, the Server checks if any client wants its service. If there

is no client, check again. If there is a request from a client then proceed with

response with request.

WiFiClient client = espServer.available();

if(!client)

{

return;

}

When a client enters the IP Address of ESP8266 in its browser, the Server responds

back with a simple web page. This is the first request – response, so there will not be

any GPIO action. The request from the client is in the form of HTTP GET Method.

You can see in the following image the serial monitor output of the first request from

the server i.e., the client enters the IP Address in its browser. The request was “GET

/ HTTP/1.1”. The “1.1” at the end is the version of HTTP.

If the client is able to open the web page successfully, then the web server is working

properly and the HTTP Communication between client and server is successful.

https://www.electronicshub.org/wp-content/uploads/2021/02/NodeMCU-Web-Server-Serial-2.jpg

Now, depending on the status of the LED, the buttons perform two actions. If the

LED is OFF and we click on the button, the client sends a request to turn ON the

LED and vice-versa.

To differentiate between the two requests, we used two URLs for the same button

click that gets sent to the server based on the status of the LED. So, for both the

LEDs, we have a total of four URLs. They are:

• /GPIO4ON

• /GPIO4OFF

• /GPIO5ON

• /GPIO5OFF

Using these URLs, the client sends the request and the format of the request will be

in the following forms:

• GET /GPIO4ON HTTP/1.1

• GET /GPIO4OFF HTTP/1.1

• GET /GPIO5ON HTTP/1.1

• GET /GPIO5OFF HTTP/1.1

The next piece of code resolves this request from the client and performs necessary

action i.e., making GPIO4 or GPIO5 LOW or HIGH.

if (request.indexOf("/GPIO4ON") != -1)

{

Serial.println("GPIO4 LED is ON");

digitalWrite(gpio4LEDPin, HIGH);

gpio4Value = HIGH;

}

if (request.indexOf("/GPIO4OFF") != -1)

{

Serial.println("GPIO4 LED is OFF");

digitalWrite(gpio4LEDPin, LOW);

gpio4Value = LOW;

}

if (request.indexOf("/GPIO5ON") != -1)

{

Serial.println("GPIO5 LED is ON");

digitalWrite(gpio5LEDPin, HIGH);

gpio5Value = HIGH;

}

if (request.indexOf("/GPIO5OFF") != -1)

{

Serial.println("GPIO5 LED is OFF");

digitalWrite(gpio5LEDPin, LOW);

gpio5Value = LOW;

}

Modifying the Code for ESP8266 AP Mode Web Server

If you want to create a web server in which the ESP8266 is acting as an Access Point

(Soft AP), then you can still use the previous code but with slight modifications.

The first important thing to modify is the SSID and Password. In STA Mode (station

mode), we enter the SSID and Password of the Router. But in AP mode, we have to

create a Wi-Fi Network using ESP8266 with its own SSID and Password so that

clients can connect to this network.

For example, you can put the SSID as “ESP8266-WIFI” and password as “12345678”.

This SSID will be visible to clients and in order to connect to this network, use the

above password.

const char* ssid = " ESP8266-WIFI ";

const char* password = "12345678";

Next is the IP address, gateway and subnet. This information is necessary for

ESP8266 in AP Mode in order to create a Wi-Fi Network.

IPAddress ip(192,168,1,1);

IPAddress gateway(192,168,1,1);

IPAddress subnet(255,255,255,0);

Now, we can initialize the ESP8266 in AP Mode and also configure its IP address

using the following two lines.

WiFi.softAP(ssid, password);

WiFi.softAPConfig(ip, gateway, subnet);

Difference between IoT and M2M
1. Internet of Things: IOT is known as the Internet of Things where

things are said to be the communicating devices that can interact with
each other using a communication media. Usually every day some

new devices use various sensors and actuators for sending and
receiving data over the internet.

2. Machine to Machine: This is commonly known as Machine to

machine communication. It is a concept where two or more than two
machines communicate with each other without human interaction
and internet. M2M communications offer several applications such as

security, tracking and tracing, manufacturing and facility
management.

Difference between IoT and M2M :

Basis of IoT M2M

Abbreviation Internet of Things Machine to Machine

Intelligence

Devices have objects that

are responsible for

decision making

Some degree of

intelligence is observed in

this.

Connection

type used

The connection is via

Network and using various

communication types.

The connection is a point

to point

Communication

protocol used

Internet protocols are used

such as HTTP, FTP,

and Telnet.

Traditional protocols and

communication

technology techniques are

used

Data Sharing

Data is shared between

other applications that are

used to improve the end-

user experience.

Data is shared with only

the communicating

parties.

Internet

Internet connection is

required for

communication

Devices are not dependent

on the Internet.

Type of It supports cloud It supports point-to-point

Basis of IoT M2M

Communication communication communication.

Computer

System

Involves the usage of both

Hardware and Software.

Mostly hardware-based

technology

Scope

A large number of devices

yet scope is large. Limited Scope for devices.

Business Type

used

Business 2 Business(B2B)

and Business 2

Consumer(B2C)

Business 2 Business

(B2B)

Open API

support

Supports Open API

integrations.

There is no support for

Open APIs

Examples

Smart wearables, Big Data

and Cloud, etc.

Sensors, Data and

Information, etc.

IoT Communication Protocols—IoT Data Protocols

These data communication protocols are those that work in the low levels of

the Open Systems Interconnection (OSI) model, without the need for an

Internet connection.

IoT Data Communication Protocols

Some of the different IoT data protocols, namely:

• Message Queue Telemetry Transport (MQTT)

• HyperText Transfer Protocol (HTTP)

• Constrained Application Protocol (CoAP)

• Data Distribution Service (DDS)

• WebSocket

Message Queue Telemetry Transport (MQTT)

Designed to be lightweight, so it can work in very low bandwidth

networks, MQTT allows communication between nodes in both reliable and

unreliable networks. MQTT follows a publish/subscribe architecture,

meaning that there are nodes (brokers) that make the information available,

while others (clients) can read the available information after subscribing by

accessing the corresponding URL.

A use case of MQTT is in a smart factory where there is temperature sensors

installed along with the production plant. The installed sensors will connect

to the MQTT broker and will publish the data within sensor topics, as

follows:

Figure 1. MQTT's publish/subscribe architecture.

In addition, MQTT defines three levels of quality of service, depending upon

the reliability, from lowest to highest:

• Level 0: there is no guarantee of the message delivery.

• Level 1: the delivery is guaranteed, but it is possible to receive

duplicate messages.

• Level 2: the delivery is guaranteed and there will be no duplicates.

 HyperText Transfer Protocol (HTTP)

This protocol has been the origin of data communication for the World Wide

Web (WWW), so it is being used in the IoT world. However, it is not optimized

for it because of the following:

• The HTTP is made for two systems communicating to each other at a

time, not more, so it is time and energy-consuming to connect several

sensors to get information.

• The HTTP is unidirectional, made for one system (client) to be sending

one message to another one (server). This makes it quite hard to

escalate an IoT solution.

• Power consumption: HTTP relies on Transmission Control Protocol

(TCP), which requires a lot of computing resources, so it is not

suitable for battery-powered applications.

 Constrained Application Protocol (CoAP)

CoAP is a web transfer protocol to be used with limited networks with low

bandwidth and low availability. It follows client/server architecture and is

built similarly to HTTP, supporting the REST model: servers make resources

available with an URL, and clients can make requests of types GET, POST,

PUT and DELETE.

Data Distribution Service (DDS)

Similar to MQTT, DDS follows publish-subscribe methodology, with the

main difference being that there are no brokers. It means that all publishers

(i.e., temperature sensors) and subscribers (i.e., mobile phones) are all

connected to the same network. This network is known as Global Data

Space (GDS) and it interconnects each node with all the other ones to avoid

bottlenecks. An example of the DDS GDS can be seen in Figure 2.

Figure 2. A DDS Global Data Space.

Furthermore, any node can leave or join the network, since they are

dynamically discovered.

 WebSocket

Linked to the HTTP protocol, the WebSocket technology establishes a TCP

connection between a browser and a server, and then both of them exchange

information until the connection is closed. Figure 3 shows a high-level

comparison between HTTP and WebSocket.

Figure 3. Comparison between HTTP and WebSocket.

Although this protocol can be seen as an improvement of the HTTP

connection, the WebSocket is still very overloaded and heavy for IoT

applications.

Virtualization in Cloud Computing and Types

Virtualization is a technique of how to separate a service from the

underlying physical delivery of that service. It is the process of creating a

virtual version of something like computer hardware. It was initially

developed during the mainframe era. It involves using specialized software to

create a virtual or software-created version of a computing resource rather

than the actual version of the same resource.

With the help of Virtualization,

multiple operating systems and

applications can run on same machine

and its same hardware at the same

time, increasing the utilization and

flexibility of hardware.

In other words, one of the main cost

effective, hardware reducing, and

energy saving techniques used by

cloud providers is virtualization.

Virtualization allows sharing a single

physical instance of a resource or an

application among multiple customers

and organizations at one time.

BENEFITS OF VIRTUALIZATION:

1. More flexible and efficient allocation of resources.

2. Enhance development productivity.

3. It lowers the cost of IT infrastructure.

4. Remote access and rapid scalability.

5. High availability and disaster recovery.

6. Pay peruse of the IT infrastructure on demand.

7. Enables running multiple operating systems.

Types of Virtualization:

1. Application Virtualization.

2. Network Virtualization.

3. Desktop Virtualization.

4. Storage Virtualization.

5. Server Virtualization.

6. Data virtualization.

1. Application Virtualization: Application virtualization helps a user to

have remote access of an application from a server. The server stores all

personal information and other characteristics of the application but can

still run on a local workstation through the internet. Example of this

would be a user who needs to run two different versions of the same

software.

2. Network Virtualization: The ability to run multiple virtual networks

with each has a separate control and data plan. It co-exists together on

top of one physical network. It can be managed by individual parties that

potentially confidential to each other. Network virtualization provides a

facility to create and provision virtual networks—logical switches,

routers, firewalls, load balancer, Virtual Private Network (VPN), and

workload security within days or even in weeks.

3. Desktop Virtualization: Desktop virtualization allows the users’ OS to

be remotely stored on a server in the data centre. It allows the user to

access their desktop virtually, from any location by a different machine.

Users who want specific operating systems other than Windows Server

will need to have a virtual desktop. Main benefits of desktop

virtualization are user mobility, portability, easy management of software

installation, updates, and patches.

4. Storage Virtualization: Storage virtualization is an array of servers that

are managed by a virtual storage system. The servers aren’t aware of

exactly where their data is stored. It makes managing storage from

multiple sources to be managed and utilized as a single repository.

storage virtualization software maintains smooth operations, consistent

performance and a continuous suite of advanced functions despite

changes, break down and differences in the underlying equipment.

5. Server Virtualization: This is a kind of virtualization in which masking

of server resources takes place. Here, the central-server(physical server)

is divided into multiple different virtual servers by changing the identity

number, processors. It causes an increase in the performance and

reduces the operating cost by the deployment of main server resources

into a sub-server resource. It’s beneficial in virtual migration, reduce

energy consumption, reduce infrastructural cost, etc.

6. Data virtualization: The data is collected from various sources and

managed that at a single place without knowing more about the

technical information like how data is collected, stored & formatted then

arranged that data logically. so that its virtual view can be accessed by

its interested people and stakeholders, and users through the various

cloud services remotely. Many big giant companies are providing their

services like Oracle, IBM, At scale, Cdata, etc.

 It can be used to performing various kind of tasks such as:

• Data-integration

• Business-integration

• Service-oriented architecture data-services

• Searching organizational data

IoT Cloud Architecture

Some incarnations of these IoT systems are Smart Homes, Connected Cars,

Smart Factories, and Smart Grids that consolidate/manage office data.

An IoT cloud architecture is introduced when there is a need to process

and analyse large data sets. IoT cloud platform should be robust, scalable

and agile with impeccable security features.

Layers of Cloud Architecture for IoT

In an IoT cloud architecture, the data flows across many layers.

Although the actual cloud platform configuration may differ between

organisations, all these solutions accomplish the same basic objective.

This is allowing different devices to connect to the network, processing the

data and utilizing the insights gained for automation. A significant part of

the data processing takes place in the cloud databases and reporting layer.

Let us take a look at the basic components of an IoT architecture.

1. IoT Devices: The device integrates with sensors or actuators and

establishes a connection with the IoT Integration Middleware. In some

use cases, multiple devices may be grouped together and connected to

an IoT gateway infrastructure that transmits device data to the IoT

Integration Middleware. The devices have drivers, i.e., software that

enables access to the sensors/actuators.

2. IoT Integration Middleware: The IoT Integration Middleware is an

integration layer for various devices when connecting with the cloud. It

receives data from the connected devices, processes it and transmits this

information to downstream applications. The processing of data may

include the evaluation of condition-action rules, and deployment of

commands to the device sensors based on the evaluation. An IoT

gateway has to be installed in between for communication with the

middleware platform.

The middleware broker also ensures that there is no loss of data, since

asynchronous communication is established with the connected device.

1. Cloud Servers: Servers are the most important part of the IoT cloud,

as these are needed for providing business services to customers.

These are virtual machines linked to individual databases.

2. Databases: Based on the business requirements for data storage and

processing, SQL and No SQL databases can be configured on the IoT

cloud. SQL databases store data in the form of two-dimensional

tables. The main disadvantage of this kind of database is its

performance.

3. Downstream Applications/BI Tools: The cloud servers are connected

to third-party apps, mobile/web applications or business intelligence

tools through REST API endpoints.

When a large number of IoT devices and applications are connected to the

IoT cloud platform, the cloud application servers will have to transfer a huge

amount of data. In order to streamline this, load balancing is enforced. This

ensures even distribution of workload across the backend servers and

improves efficiency.

Cloud Computing Architecture

Cloud computing technology is used by both small and large organizations

to store the information in cloud and access it from anywhere at anytime

using the internet connection.

Cloud computing architecture is a combination of service-oriented

architecture and event-driven architecture.

Cloud computing architecture is divided into the following two parts -

o Front End

o Back End

The below diagram shows the architecture of cloud computing -

Front End: The front end is

used by the client. It contains

client-side interfaces and

applications that are required

to access the cloud

computing platforms. The

front end includes web

servers (including Chrome,

Firefox, internet explorer,

etc.), thin & fat clients,

tablets, and mobile devices.

Back End: The back end is

used by the service provider.

It manages all the resources that are required to provide cloud computing

services. It includes a huge amount of data storage, security mechanism,

virtual machines, deploying models, servers, traffic control mechanisms, etc.

Components of Cloud Computing Architecture

There are the following components of cloud computing architecture -

1. Client Infrastructure: Client Infrastructure is a Front end component. It

provides GUI (Graphical User Interface) to interact with the cloud.

2. Application: The application may be any software or platform that a

client wants to access.

3. Service: A Cloud Services manages that which type of service you access

according to the client’s requirement.

Cloud computing offers the following three type of services:

i. Software as a Service (SaaS) – It is also known as cloud application

services. Mostly, SaaS applications run directly through the web browser

means client do not require downloading and installing these applications.

Some important example of SaaS is given below –

Example: Google Apps, Salesforce Dropbox, Slack, Hubspot, Cisco WebEx.

ii. Platform as a Service (PaaS) – It is also known as cloud

platform services. It is quite similar to SaaS, but the difference is that PaaS

provides a platform for software creation, but using SaaS, client can access

software over the internet without the need of any platform.

Example: Windows Azure, Force.com, Magento Commerce Cloud,OpenShift.

iii. Infrastructure as a Service (IaaS) – It is also known as cloud

infrastructure services. It is responsible for managing applications data,

middleware and runtime environments.

Example: Amazon Web Services (AWS) EC2, Google Compute Engine (GCE),

Cisco Metapod.

4. Runtime Cloud: Runtime Cloud provides the execution and runtime

environment to the virtual machines.

5. Storage: Storage is one of the most important components of cloud

computing. It provides a huge amount of storage capacity in the cloud to

store and manage data.

6. Infrastructure: It provides services on the host level, application level,

and network level. Cloud infrastructure includes hardware and software

components such as servers, storage, network devices, virtualization

software, and other storage resources that are needed to support the cloud

computing model.

7. Management: Management is used to manage components such as

application, service, runtime cloud, storage, infrastructure, and other

security issues in the backend and establish coordination between them.

8. Security: Security is an in-built back end component of cloud

computing. It implements a security mechanism in the back end.

9. Internet: The Internet is medium through which front end and back end

can interact and communicate with each other.

Role of Cloud computing in IoT

1. Enables remote computing capabilities: With a large storage capacity,

IoT eliminates the dependencies on on-site infrastructure. With continued

development and internet-based tech development such as the internet and

devices supporting advanced cloud solutions, cloud technology has become

main stream.

2. Security & Privacy: Tasks can be handled automatically with cloud tech

& IoT, organizations are able to reduce security threats by a considerable

amount. A cloud tech-enabled with IoT is a solution that provides

preventive, detective and corrective control. With effective authentication

and encryption protocols, it also provides users with strong security

measures. Protocols such as biometrics in IoT products help manage as well

as safeguard user identities along with data.

3. Data Integration: Current tech developments have not only integrated

IoT and cloud smoothly but also provide real-time connectivity and

communication. This in turn makes the extraction of real-time information

about key business processes and performing on-spot data integration with

24/7 connectivity easy. Cloud-based solutions with powerful data

integration capabilities are able to handle a large amount of data generated

from multiple sources along with its centralized storage, processing and

analysis.

4. Minimal Hardware Dependency: Presently, several IoT solutions offer

plug-and-play hosting services that are enabled by integrating the cloud

with the IoT. With cloud-enabled, IoT hosting providers need not rely on any

kind of hardware or equipment to support the agility required by IoT

devices. It has become easy for organizations to implement large scale IoT

strategies seamlessly across platforms and move to omni channel

communication.

5. Business Continuity: Known for their agility and reliability, cloud

computing solutions are able to provide business continuity in case of any

emergency, data loss or disaster. Cloud services operate via a network of

data servers located in multiple geographical locations storing multiple

copies of data backup. In case of any emergency, IoT based operations

continue to work and data recovery becomes easy.

6. Communication Between Multiple Devices & Touchpoint:

IoT devices and services need to connect with each other and communicate

to perform tasks that are enabled using cloud solutions. By supporting

several robust APIs, cloud & IoT is able to interact amongst themselves and

connected devices. Having a cloud supported communication helps fasten

the interaction happen seamlessly.

7. Response Time & Data Processing:

Edge computing combined with IoT solutions usually shortens response

time and speeds up data processing capabilities. It requires the deployment

of IoT with cloud computing and edge computing solutions for maximum

utilization.

Though cloud computing services can accelerate the growth of IoT, there are

certain challenges in deploying these services successfully. The combination

of IoT and cloud presents a few obstacles that need to be handled

beforehand.

Cloud Service Models

There are the following three types of cloud service

models -

1. Infrastructure as a Service (IaaS)

2. Platform as a Service (PaaS)

3. Software as a Service (SaaS)

Infrastructure as a Service (IaaS)

IaaS is also known as Hardware as a Service (HaaS). It is a computing

infrastructure managed over the internet. The main advantage of using IaaS

is that it helps users to avoid the cost and complexity of purchasing and

managing the physical servers.

Characteristics of IaaS

There are the following characteristics of IaaS -

o Resources are available as a service

o Services are highly scalable

o Dynamic and flexible

o GUI and API-based access

o Automated administrative tasks

Example: DigitalOcean, Linode, Amazon Web Services (AWS), Microsoft

Azure, Google Compute Engine (GCE), Rackspace, and Cisco Metacloud.

Platform as a Service (PaaS)

PaaS cloud computing platform is created for the programmer to develop,

test, run, and manage the applications.

Characteristics of PaaS

There are the following characteristics of PaaS -

o Accessible to various users via the same development application.

o Integrates with web services and databases.

o Builds on virtualization technology, so resources can easily be scaled

up or down as per the organization's need.

o Support multiple languages and frameworks.

o Provides an ability to "Auto-scale".

Example: AWS Elastic Beanstalk, Windows Azure, Heroku, Force.com,

Google App Engine, Apache Stratos, Magento Commerce Cloud, and

OpenShift.

Software as a Service (SaaS)

SaaS is also known as "on-demand software". It is a software in which the

applications are hosted by a cloud service provider. Users can access these

applications with the help of internet connection and web browser.

Characteristics of SaaS

There are the following characteristics of SaaS -

o Managed from a central location

o Hosted on a remote server

o Accessible over the internet

o Users are not responsible for hardware and software updates. Updates

are applied automatically.

o The services are purchased on the pay-as-per-use basis

Example: BigCommerce, Google Apps, Salesforce, Dropbox, ZenDesk, Cisco

WebEx, ZenDesk, Slack, and GoToMeeting.

Difference between IaaS, PaaS, and SaaS

The below table shows the difference between IaaS, PaaS, and SaaS -

IaaS Paas SaaS

It provides a virtual data

center to store

information and create

platforms for app

development, testing,

and deployment.

It provides virtual

platforms and tools to

create, test, and deploy

apps.

It provides web software

and apps to complete

business tasks.

It provides access to

resources such as

virtual machines, virtual

storage, etc.

It provides runtime

environments and

deployment tools for

applications.

It provides software as a

service to the end-users.

It is used by network

architects.

It is used by developers. It is used by end users.

IaaS provides only

Infrastructure.

PaaS provides

Infrastructure+Platform.

SaaS provides

Infrastructure+Platform

+Software.

Infrastructure as a Service | IaaS

Iaas is also known as Hardware as a Service (HaaS). It allows customers to

outsource their IT infrastructures such as servers, networking, processing,

storage, virtual machines, and other resources. Customers access these

resources on the Internet using a pay-as-per use model.

IaaS is offered in three models: public, private and hybrid cloud. The private

cloud implies that the infrastructure resides at the customer-premise. In the

case of public cloud, it is located at the cloud computing platform vendor's

data center and the hybrid cloud is a combination of the two in which the

customer selects the best of either public cloud or private cloud.

IaaS provider provides the following services -

1. Compute: Computing as a Service includes virtual central processing

units and virtual main memory for the Vms that is provisioned to the

end- users.

2. Storage: IaaS provider provides back-end storage for storing files.

3. Network: Network as a Service

(NaaS) provides networking

components such as routers,

switches, and bridges for the Vms.

4. Load balancers: It provides load

balancing capability at the

infrastructure layer.

Advantages of IaaS cloud computing layer

There are the following advantages of IaaS computing layer -

1. Shared infrastructure: IaaS allows multiple users to share the same

physical infrastructure.

2. Web access to the resources: Iaas allows IT users to access resources

over the internet.

3. Pay-as-per-use model: IaaS providers provide services based on the pay-

as-per-use basis. The users are required to pay for what they have used.

4. Focus on the core business: IaaS providers focus on the organization's

core business rather than on IT infrastructure.

5. On-demand scalability: Using IaaS, users do not worry about to upgrade

software and troubleshoot the issues related to hardware components.

Disadvantages of IaaS cloud computing layer

1. Security: Security is one of the biggest issues in IaaS. Most of the IaaS

providers are not able to provide 100% security.

2. Maintenance & Upgrade: Although IaaS service providers maintain the

software, but they do not upgrade the software for some organizations.

3. Interoperability issues: It is difficult to migrate VM from one IaaS

provider to the other, so the customers might face problem related to vendor

lock-in.

Top Iaas Providers who are providing IaaS cloud computing platform

IaaS Vendor Iaas Solution Details

Amazon Web

Services

Elastic, Elastic

Compute Cloud

(EC2) MapReduce,

Route 53, Virtual

Private Cloud, etc.

The cloud computing platform pioneer,

Amazon offers auto scaling, cloud

monitoring, and load balancing

features as part of its portfolio.

Reliance

Communications

Reliance Internet

Data Center

RIDC supports both traditional

hosting and cloud services, with data

centers in Mumbai, Bangalore,

Hyderabad, and Chennai.

Sify Technologies Sify IaaS Sify's cloud computing platform is

powered by HP's converged

infrastructure. The vendor offers all

three types of cloud services: IaaS,

PaaS, and SaaS.

Tata

Communications

InstaCompute InstaCompute is Tata

Communications IaaS offering.

InstaCompute data centers are located

in Hyderabad and Singapore, with

operations in both countries.

Platform as a Service | PaaS

Platform as a Service (PaaS) provides a runtime environment. It allows

programmers to easily create, test, run and deploy web applications. Client

can purchase these applications from a cloud service provider on a pay-as-

per use basis and access them using the Internet connection.

PaaS includes infrastructure (servers, storage, and networking) and platform

(middleware, development tools, database management systems, business

intelligence, and more) to support the web application life cycle.

Example: Google App Engine, Force.com, Joyent, Azure.

1. Programming languages: PaaS

providers provide various

programming languages for the

developers to develop the

applications. Programming

languages provided by PaaS

providers are Java, PHP, Ruby,

Perl, and Go.

2. Application frameworks: PaaS

providers provide application frameworks to easily understand the

application development. Application frameworks provided by PaaS

providers are Node.js, Drupal, Joomla, WordPress, Spring, Play, Rack, and

Zend.

3. Databases: PaaS providers provide various databases such as ClearDB,

PostgreSQL, MongoDB, and Redis to communicate with the applications.

4. Other tools: PaaS providers provide various other tools that are required

to develop, test, and deploy the applications.

Advantages of PaaS:

1) Simplified Development: PaaS allows developers to focus on

development and innovation without worrying about infrastructure

management.

2) Lower risk: No need for up-front investment in hardware and software.

Developers only need a PC and an internet connection to start building

applications.

3) Prebuilt business functionality: Some PaaS vendors also provide

already defined business functionality. So that users can avoid building

everything from very scratch and hence can directly start the projects only.

4) Instant community: PaaS vendors frequently provide online

communities where the developer can get the ideas to share experiences and

seek advice from others.

5) Scalability: Applications deployed can scale from one to thousands of

users without any changes to the applications.

Disadvantages of PaaS cloud computing layer

1) Vendor lock-in: One has to write the applications according to the

platform provided by the PaaS vendor, so the migration of an application to

another PaaS vendor would be a problem.

2) Data Privacy: Corporate data, whether it can be critical or not, will be

private, so if it is not located within the walls of the company, there can be a

risk in terms of privacy of data.

Popular PaaS Providers

The below table shows some popular PaaS providers and services that are

provided by them -

Providers Services

Google App Engine (GAE) App Identity, URL Fetch, Cloud storage client

library, Logservice

Salesforce.com Faster implementation, Rapid scalability, CRM

Services, Sales cloud, Mobile connectivity, Chatter.

Windows Azure Compute, security, IoT, Data Storage.

AppFog Justcloud.com, SkyDrive, GoogleDocs

Openshift RedHat, Microsoft Azure.

Cloud Foundry from

VMware

Data, Messaging, and other services.

Software as a Service | SaaS

SaaS is also known as "On-Demand Software". It is a software distribution

model in which services are hosted by a cloud service provider. These

services are available to end-users over the internet. so, the end-users do

not need to install any software on their devices to access these services.

There are the following services provided by SaaS providers -

Business Services - SaaS Provider

provides various business services

to start-up the business. The SaaS

business services

include ERP (Enterprise Resource

Planning), CRM (Customer

Relationship Management), billing,

and sales.

Document Management - SaaS

document management is a software application offered by a third party

(SaaS providers) to create, manage and track electronic documents.

Example: Slack, Samepage, Box, and Zoho Forms.

Social Networks - Social networking service providers use SaaS for their

convenience and handle the general public's information.

Mail Services - To handle the unpredictable number of users and load on e-

mail services, many e-mail providers offering their services using SaaS.

Advantages of SaaS cloud computing layer

1. SaaS is easy to buy: SaaS pricing is based on a monthly fee or annual

fee subscription, so it allows organizations to access business functionality

at a low cost, which is less than licensed applications.

2. One to Many: SaaS services are offered as a one-to-many model means a

single instance of the application is shared by multiple users.

3. Less hardware required for SaaS: The software is hosted remotely, so

organizations do not need to invest in additional hardware.

4. Low maintenance required for SaaS: Software as a service removes the

need for installation, set-up, and daily maintenance for the organizations.

The initial set-up cost for SaaS is typically less than the enterprise software.

So SaaS does easy to monitor and automatic updates.

5. No special software or hardware versions required: All users will have

the same version of the software and typically access it through the web

browser. SaaS reduces IT support costs by outsourcing hardware and

software maintenance and support to the IaaS provider.

6. Multidevice support: SaaS services can be accessed from any device

such as desktops, laptops, tablets, phones and thin clients.

7. No client-side installation: SaaS services are accessed directly from the

service provider using the internet connection, so do not need to require any

software installation.

Disadvantages of SaaS cloud computing layer

1) Security: Actually, data is stored in the cloud, so security may be an

issue for some users.

2) Latency issue: There is a possibility that there may be greater latency

when interacting with the application compared to local deployment.

Therefore, the SaaS model is not suitable for applications whose demand

response time is in milliseconds.

3) Total Dependency on Internet: Without an internet connection, most

SaaS applications are not usable.

4) Switching between SaaS vendors is difficult: Switching SaaS vendors

involve the difficult and slow task of transferring the very large data files

over the internet and then converting and importing them into another SaaS

also.

Popular SaaS Providers

The below table shows some popular SaaS providers and services that are

provided by them –

Provider Services

Salseforce.com On-demand CRM solutions

Microsoft Office
365

Online office suite

Google Apps Gmail, Google Calendar, Docs, and sites

NetSuite ERP, accounting, order management, CRM, Professionals
Services Automation (PSA), and e-commerce applications.

GoToMeeting Online meeting and video-conferencing software

Constant Contact E-mail marketing, online survey, and event marketing

Oracle CRM CRM applications

Workday, Inc Human capital management, payroll, and financial
management.

Cloud Service Provider Companies

Cloud Service providers (CSP) offers various services such as Software

as a Service, Platform as a service, Infrastructure as a service, network

services, business applications, mobile applications,

and infrastructure in the cloud. The cloud service providers host these

services in a data center and users can access these services through cloud

provider companies using an Internet connection.

There are the following Cloud Service Providers Companies -

Amazon Web Services (AWS): AWS (Amazon Web Services) is a secure

cloud service platform provided by Amazon. It offers various services such

as database storage, computing power, content delivery, Relational

Database, Simple Email, Simple Queue and other functionality to increase

the organization's growth.

Features of AWS

AWS provides various powerful features for building scalable, cost-effective,

enterprise applications. Some important features of AWS is given below-

o AWS is scalable because it has an ability to scale the computing

resources up or down according to the organization's demand.

o AWS is cost-effective as it works on a pay-as-you-go pricing model.

o It provides various flexible storage options.

o It offers various security services such as infrastructure security,

data encryption, monitoring & logging, identity & access control,

penetration testing, and DDoS attacks.

o It can efficiently manage and secure Windows workloads.

2. Microsoft Azure: Microsoft Azure is also known as Windows Azure. It

supports various operating systems, databases, programming languages,

frameworks that allow IT professionals to easily build, deploy and manage

applications through a worldwide network. It also allows users to create

different groups for related utilities.

Features of Microsoft Azure

o Microsoft Azure provides scalable, flexible, and cost-effective

o It allows developers to quickly manage applications and websites.

o It managed each resource individually.

o Its IaaS infrastructure allows us to launch a general-purpose virtual

machine in different platforms such as Windows and Linux.

o It offers a Content Delivery System (CDS) for delivering the Images,

videos, audios, and applications.

3. Google Cloud Platform: Google cloud platform is a product of Google. It

consists of a set of physical devices, such as computers, hard disk drives,

and virtual machines. It also helps organizations to simplify the migration

process.

Features of Google Cloud

o Google cloud includes various big data services such as Google

BigQuery, Google CloudDataproc, Google CloudDatalab, and Google

Cloud Pub/Sub.

o It provides various services related to networking, including Google

Virtual Private Cloud (VPC), Content Delivery Network, Google Cloud

Load Balancing, Google Cloud Interconnect, and Google Cloud DNS.

o It offers various scalable and high-performance

o GCP provides various serverless services such as Messaging, Data

Warehouse, Database, Compute, Storage, Data Processing, and

Machine learning (ML)

o It provides a free cloud shell environment with Boost Mode.

4. IBM Cloud Services

IBM Cloud is an open-source, faster, and more reliable platform. It is built

with a suite of advanced data and AI tools. It offers various services such

as Infrastructure as a service, Software as a service and platform as a

service. Client can access its services like compute power, cloud data &

Analytics, cloud use cases and storage networking using internet

connection.

Feature of IBM Cloud

o IBM cloud improves operational efficiency.

o Its speed and agility improve the customer's satisfaction.

o It offers Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

as well as Software as a Service (SaaS)

5. VMware Cloud: VMware cloud is a Software-Defined Data Center (SSDC)

unified platform for the Hybrid Cloud. It allows cloud providers to build

agile, flexible, efficient, and robust cloud services.

Features of VMware

o VMware cloud works on the pay-as-per-use model and monthly

subscription

o It provides better customer satisfaction by protecting the user's data.

o It can easily create a new VMware Software-Defined Data Center

(SDDC) cluster on AWS cloud by utilizing a RESTful API.

o It provides flexible storage options.

o It provides a dedicated high-performance network for managing the

application traffic and also supports multicast networking.

o It eliminates the time and cost complexity.

Thingspeak IoT analytics Platform

Thingspeak is open source platform made for Internet of Things (IoT)

device developers and learners where developers can send and log data to

the server, analyse, retrieve and store results using graphs with matlab

support.

Client can send up to 8 data simultaneously to the thingspeak account; the

data uploaded will be converted to graphical representation automatically as

illustrated below:

Sending data to Thingspeak

The straight line signifies that there was no temperature or humidity

change during data logging. Client can over the mouse cursor on these dots

to see the numerical data recorded at a particular local time. Thingspeak

updates the data/graph every 15 seconds.

To send data to thingspeak Client need something called API key from Client

account which needs to be inserted in the given program code.

API key in Thingspeak

API stands for “Application programing Interface”, on thingspeak it is

a string of random character contains alphabets of lower and upper case,

numbers and even special characters to identify Client account and ensures

that Client sent data doesn’t end on someone else’s account and vice-versa.

Sign up for Thingspeak and get API Key

• Signing up for thingspeak is simple, just click this

link: https://thingspeak.com/users/sign_up and fill the necessary

fields.

• Once this is done a verification link will be sent to e-mail and click the

received link.

Now go to Thingspeak account and click on the API key tab and client can

see their read and write API keys. Always keep client write API keys

confidential.

Getting API key from Thinkgspeak

• Now click the channel settings, Client will now enable the two

channels (graphs) and will be writing necessary labels to make our

readings easier. Just do the following changes in client account as

shown below:

Editing Thingspeak Channels

•

• After making the changes scroll down and press “save”.

Now let’s learn about “APN” which is necessary for enabling the GSM modem

to access internet.

APN

APN stands for Access Point Name. It is the gateway between

carrier’s network and internet. APN helps in getting the IP address and

decides which security protocols should be used.

For example:

• Airtel: airtelgrps.com (Tested)

• BSNL: bsnlnet (Tested)

