
C Programming U23EL1A1

Dept. of Electronics GVN College

UNIT- II
Program Control Constructs

Decision Making and Branching Statements

Decision making in C

Decision making is about deciding the order of execution of statements based on
certain conditions or repeat a group of statements until certain specified conditions are met. C
language handles decision-making by supporting the following statements,

a. if statement
b. switch statement
c. conditional operator statement
d. goto statement
The if statement may be implemented in different forms depending on the complexity

of conditions to be tested. The different forms are,
 Simple if statement
 If....else statement
 Nested if....else statement
 else if statement

Simple if Statement
Simple if statement is used to execute some statements for a particular condition. The

general form of if statement and flow chart is shown below:

Where condition is a relational or a logical expression. The condition must be placed

in parentheses. Statement-1 can be either simple or compound statement (group of
statements). The value of condition is evaluated first. The value may be either true or false. If
the condition is true, the statement – 1 is executed and then the control is transferred to
statement – 2. If the condition is false, the control is transferred directly to the statement-2
without executing the statement-1.

C Programming U23EL1A1

Dept. of Electronics GVN College

if …. else Statement

The simple if statement will execute a single statement, or a group of statements, if
the condition lis true. If the condition is false, it does nothing.

If …else statement is used to execute one group of statements if the condition is true.
The other groups of statements are executed when the condition is false. General form of
if…else statement and flow chart is shown below:

Nested ifs

A nested if statement is an if statement which is within another if – block or else –
block. If an if…else is contained completely within another construct, then it is called nesting
of if’s.

C Programming U23EL1A1

Dept. of Electronics GVN College

If the condition-1 is false, the statement-3 will be executed. Otherwise it continues to

test condition- 2. If the condition-2 is true, the statement-1 will be executed; otherwise the
statement-2 will be executed and then the control is transferred to statement-4. Second
if…else construction may be nested in the if block or else block of the first if…else
construction. The statements between the keywords if and else are called if block and
statements after the else form the else block.

Example: Program to select and print the largest of the three float numbers using
nested “ifelse” statements.

include<stdio.h>
include<conio.h>
void main()
 {
float a,b,c;
printf(“Enter Three Values:”);
scanf(“%f%f%f ”, &a, &b, &c);
printf(“\n Largest Value is:”) ;
if(a>b)
{
if(a>c)
printf(“ %f ”, a);
else
printf(“ %f ”, c);
}
else
{
if (b>c)
printf(“ %f ”, b);
else
printf(“ %f ”, c);
 }
getch(); }
In the above example second if….else construct is used within the else block and if

block of the first if…else construct.

C Programming U23EL1A1

Dept. of Electronics GVN College

Else if ladder
The else-if ladder is mutiway branching statement. It is used to test many conditions.

The conditions are evaluated from top to bottom. When a true condition is evaluated,

the statement associated with it is executed and the rest of the ladder is omitted. If none of the
conditions is true then default statement is executed. If the default statement is not present, no
action taken place when all other conditions are false.

Example
The marks obtained by a student in 5 different subjects are input through the

keyboard. The student gets a division as per the following rules:
(i) Percentage above or equal to 60 - First division
(ii) Percentage between 50 and 59 - Second division (iii) Percentage between 40 and

49 - Third division
(iv) Percentage less than 40 - Fail . Write a program to calculate the division obtained

by the student.
main()
{
Int m1, m2, m3, m4, m5, per ;
per = (m1+ m2 + m3 + m4+ m5) / 5 ;
if (per >= 60)
printf ("First division") ;
else if (per >= 50)
printf ("Second division") ;
else if (per >= 40)
printf ("Third division") ;
else
printf ("fail") ;
}
If the first condition (per >= 60) is true, then “First division” is printed. and the

control will come out of the loop. If the first condition is false, then the next statement (per
>= 50) will be evaluated. Depending upon the result, the next statement is executed or
control will come out of the loop. The above procedure is continued until the last else if.

C Programming U23EL1A1

Dept. of Electronics GVN College

Switch Statement
1. The switch statement causes a particular group of statements to be chosen from several
available groups.
2. The selection is based upon the current value of an expression which is included within the
switch statement.
3. The switch statement is a multi-way branch statement.
4. In a program if there is a possibility to make a choice from a number of options, this
structure is useful.
5. The switch statement requires only one argument of int or char data type, which is checked
with number of case options.
6. The switch statement evaluates expression and then looks for its value among the case
constants.
7. If the value matches with case constant, then that particular case statement is executed.
8. If no one case constant not matched then default is executed.
9. Here switch, case, break and default are reserved words or keywords.
10. Every case statement terminates with colon “:”.
11. In switch each case block should end with break statement

switch (expression)
{
case constant1 ;

statement – 1 ;
break;
case constant2 ;

statement – 2 ;
break;

default:
default statement ;

}
 statement –x;
Where statement-1, statement-2 are statement lists and may contain zero or more

statements. The expression following switch must be enclosed in parentheses and the body of
the switch must be enclosed within curly braces. Expression may be a variable or integer
expression.

Case labels can be only integer or character constants.
case labels do not contain any variable names. case labels must all be different . case labels
end with a semicolon.

The switch structure starts with the switch keyword. It contains one block which
contains the different cases. Each case contains different statements to be executed
corresponding to different conditions and ends with the break statement. Break statement
transfers the control out of the switch structure
to statement – x. If the value of variable is “constant1”, the “case constant1: “is executed. If
value is “constant2”, the “case constant2” is executed and so on. If the value of the variable
does not correspond to any case, the default case is executed.

C Programming U23EL1A1

Dept. of Electronics GVN College

Example

void main ()
 {
char ch; int a,b,c=0;
printf (“Enter the two values”);
scanf(“%d%d”,&a, &b);
printf (“enter the operator (+ - * /)”) ;
ch = getchar();
switch(ch)
{
case ‘’+’’ : c = a + b; break;
case ‘’-‘’ : c = a – b; break;
case ‘’*’’ : c = a*b; break;
case ‘’/’’ : c = a/b; break;
default :
 printf (“The operator is invalid”) ;
}
printf (“The result is %d”, c);
}

RULES FOR FORMING SWITCH STATEMENT
1. The order of the case may be in any order. It is not necessary that order may be in

as ascending or descending.
2. Mixing of integer and character constants in different cases is allowed.
3. If multiple statements are to be executed in each case, there is no need to enclose

within a pair of braces.
4. If default statement is not present, then the program continues with the next

instruction.
5. switch statement may occur within another switch statement.
6. If the break is not used in a certain case, the statements in the following cases are

also executed irrespective of whether that case value is true or not. This execution will
continue till a break is encountered. For example, consider the following program,

switch(ch)
{
case ‘’a’’:
case ‘’b’’:
case ‘’i’’ : printf (“The vowel i \n”);

C Programming U23EL1A1

Dept. of Electronics GVN College

case ‘’o’’: printf (“The vowel o”);
break ;
case ‘’u’’:
default : printf (Not vowel);
}
7. In the above example, if the value of ch = ‘i’, then the display will be
The vowel i
The vowel o
8. When one of the case statements is evaluated as true, all statements are executed

until a break statement is executed.
goto Statement

The goto statement is used to transfer the control from one point to another. The
general form of the goto statement is

 Where label is an identifier. Label is the name given to the target place to which the
control will be transferred. Control may be transferred to any other statement within the
program. The label is placed immediately before the statement where the control is to be
transferred. The label can be anywhere in the program either before or after the goto label
statement. The general form of the target place is

The goto statement transfers the control without checking any condition. That is why

this statement is sometimes called as unconditional goto statement. Goto statement may be
useful for exiting from any levels of nesting in one jump.
It is possible to have a forward jump or a backward jump.

 If the “label:” is before the statement “goto label;” a loop will be formed and some
statements will be executed repeatedly. Such a jump is known as a „backward
jump‟.

 If the “label:” is placed after the “goto label;” some statements will be skipped and
the jump is known as a “forward jump”.

Example

main ()
{
int x = 10; loop:
printf (“x is %d \n”, x);

goto label;

Label: statement (s)

C Programming U23EL1A1

Dept. of Electronics GVN College

x++;
if (x < 100) goto loop;
printf (“End of the goto statement”);
}

Looping Statements
Loops are used to execute a same set of instructions for many times. The number of

times a loop executed is given by some condition. The loop structures available in C are
1) for loop 2) while loop and 3) do…while loop

for loop
The for loop is used to repeat a statement or block of statements for a known number

of times. The general format of the for loop
for (initialization; condition test; increment)
{
statements(s)
 }

Initialization is an assignment statement, that is used to set the loop control variable.

The condition test is a relational or logical expression which determines when to end the
loop. The increment is a unary or an assignment expression. This section is used to alter the
value of the variable initially assigned by initialization. These three sections must be
separated by semicolon. The statement which forms the body of the loop can be either a
single statement or a compound statement (group of statements).

When the “for statement” is executed, the value of
Conditional test is evaluated and tested before each pass through the loop.

Incrementation is carried out at the end of each pass.
The for loop continues to execute as long as the value of the conditional test is true.

When the value of condition becomes false, the program comes out of the for loop
Execution of the for loop

1. Initialization of control variable is done first.
2. The value of control variable is tested using condition test. If the value is true, the

body of the loop is executed; otherwise the loop is terminated.

C Programming U23EL1A1

Dept. of Electronics GVN College

3. After the body of the loop is executed, the control is transferred back to for
statement. Control variable is altered and now the new value is tested. This process continues
till the value of the control variable fails to satisfy the test condition.
Example: To print odd numbers from 1 to 13

main()
{
int i;
for (i=1; i<=13; i=i+2)
printf(“%d”, i); }
Output : 1 3 5 7 9 11 13
The above for loop initialized the integer variable i to 1 and increments it by 2 every

time the loop is executed.
In for loop, the conditional test is always performed at the starting of the loop. The

body of the loop is not executed if the condition is false in the beginning itself. Thus the
minimum number of loop execution is zero.

All the three sections need not be present in the for statement. But semicolons are
necessary and must be shown. If the first section is omitted, the initialization is to be done
before the for loop. If the third section is omitted, the variable is incremented in the body of
the loop. If the second section is omitted, it will assumed that the permanent value is 1; then
the loop will continue indefinitely.
While loop
The while loop construct contains only the condition. The general format of the while loop is

Initialization Expression;
while(Test Condition)
{
Body of the loop
Updation Expression
}
Where body of the loop is either an empty statement, a single statement or a

block of statements. The condition may be any expression. The condition value may be zero
or non-zero.

1. The while is an entry – controlled loop statement.
2. The test condition is evaluated and if the condition is true, then the body of

the loop is executed.
3. The execution process is repeated until the test condition becomes false and

the control is transferred out of the loop.
4. On exit, the program continues with the statement immediately after the

body of the loop.
5. The body of the loop may have one or more statements.
6. The braces are needed only if the body contains two or more statements.
7. It‟is a good practice to use braces even if the body has only one statement.

do…..while loop
The do while loop is sometimes called as the do loop in C. Unlike for and while

loops, this loop checks the condition at the end of the loop. So the body of the loop is
executed at least once, even if the condition is false initially. The general form of do…while
loop is.

Initialization Expression;
do{ Body of the loop
Updation Expression; }
while (Test Condition);

C Programming U23EL1A1

Dept. of Electronics GVN College

The do…while loop repeats until the condition becomes false. In the do…while, the
body of the loop is executed first, then the condition is checked. When the condition becomes
false, control is transferred to the statement after the loop.

Difference between while loop and do-while loop

The difference between the while and do…while is illustrated by the following
program segments
while loop

main ()
{
while (100 < 10)
printf (“False”);
}

In the above program, the condition is false for the first line. So the printf () will not
be executed at all.

do…while loop

main ()
{
do
{
printf (“False”);

C Programming U23EL1A1

Dept. of Electronics GVN College

}
while (100 < 10);
}
In the above program, the printf statement will be executed only once.

Nested loops
A loop can also be used within loops.
1. i.e. one for statement within another for statement is allowed in C. (or „C‟ allows
multiple for loops in the nested forms).
2. In nested for loops one or more for statements are included in the body of the loop.
Two loops can be nested as follows.

Syntax:
for(initialize ; test condition ; increment) /* outer loop */
{
for(initialize ; test condition ; increment) /* inner loop */
{Body of loop; }
}
For example, to find the factorial value of number between 1 to 10, the program i
main ()
{
int i, j, factorial;
for (i=1; i<=10; i++)
{
factorial = 1;
for (j = 1; j<= i; j ++)
{factorial = factorial * j;}
printf (“Factorial value of %d is %d”, i, factorial) ;
}
}
One loop can be completely contained within the other. But there can be no overlap.

Each loop must have different control variable.
Comparison between the Three loops, for, while, do ….. While

S.No. Topics For loop While loop Do...while loop

1
Initialization of
condition
variable

In the
parenthesis of
the loop.

Before the loop.
Before the loop
or in the body of
the loop.

2 Test condition Before the body
of the loop.

Before the body
of the loop.

After the body
of the loop.

3
Updating the
condition
variable

After the first
execution.

After the first
execution.

After the first
execution.

4 Type Entry controlled
loop.

Entry controlled
loop.

Exit controlled
loop.

5 Loop variable Counter. Counter. Sentinel &
counter

Break Statement
1. A break statement terminates the execution of the loop and the control is transferred to

the statement immediately following the loop.
2. The break statement is used to terminate loops or to exit from a switch.
3. It can be used within a for, while, do-while, or switch statement.
4. The break statement is written simply as break;

C Programming U23EL1A1

Dept. of Electronics GVN College

Example
main()
{
int ch = 65;
for(;;ch++)
{
printf(“%c”, ch);
if (ch == 97) break;
}
}

Continue Statement
1. The continue statement is used to bypass the remainder of the current pass through a loop.
2. The loop does not terminate when a continue statement is encountered.
3. Instead, the remaining loop statements are skipped and the computation proceeds directly
to the next pass through the loop.
4. The continue statement can be included within a while, a do-while, a for statement.
5. It is simply written as “continue”.
6. The continue statement tells the compiler “Skip the following Statements and continue
with the next Iteration”.
7. In “while‟ and “do‟ loops continue causes the control to go directly to the test – condition
and then to continue the iteration process.
8. In the case of “or‟ loop, the updation section of the loop is executed before test-condition,
is evaluated.

Example

main()
{ int number, sum=0, count=0;
while (count <= 10)
{
printf(“\nEnter the number: “);
scanf(“%d”,&number);
if(number <=0) continue;
sum + = number;
count++;
} }

The above program is used to find the sum of positive numbers.

C Programming U23EL1A1

Dept. of Electronics GVN College

I/O Functions
C has no input and output statement to perform the input and output operations. C

language has a collection of library functions for input and output (I/O) operations. The input
and output functions are used to transfer the information between the computer and the
standard input / output devices.

Console I/O functions - functions to receive input from keyboard and write output to
VDU.
Formatted and Unformatted Functions

The basic difference between formatted and unformatted I/O functions is that the
formatted functions allow the input read from the keyboard or the output displayed on the
VDU to be formatted as per our requirements. For example, if values of average marks and
percentage marks are to be displayed on the screen, then the details like where this output
would appear on the screen, how many spaces would be present between the two values, the
number of places after the decimal points etc., can be controlled using formatted functions.

Console functions

Printf () Function

printf () function is used to display data on the monitor. The printf () function moves
data from the computer’s memory to the standard output device. The general format of printf
() function is

Comma is used to separate the control string from variable list.
The control string can contain : -the characters that are to be displayed on the screen.

 -format specifiers that begin with a % sign.
 -escape sequences that begin with a backward slash (\) sign.
Examples

printf (“”%f, %f, %d, %d””, i, j, k + i, 5);
printf (“Sum of %d and %d is %d””, a, b, a + b);
printf (“”Two numbers are %d and % d””,a,b);
printf () never supplies a newline automatically. Therefore multiple printf ()

statements may be used to display one line of output. A new line can be introduced by the
new line character \n.

printf (“control string”, list of

C Programming U23EL1A1

Dept. of Electronics GVN College

Conversion Characters or Format Specifiers
The character specified after % is called a conversion character. Conversion character

is used to convert one data type to another type.
Conversion
Character Meaning

%c Data item is displayed as a single character
%d Data item is displayed as a signed decimal integer
% e Data item is displayed as a floating-point value with an exponent
% f Data item is displayed as a floating-point value without an exponent
%i Data item is displayed as a signed decimal integer
%o Data item is displayed as an octal integer, without a leading zero
%s Data item is displayed as a string
%u Data item is displayed as an unsigned decimal integer
%x Data item is displayed as a hexadecimal integer, without the leading Ox

Formatted Printf Functions
Formatted printf function is used for the following purposes:
1. To print values at the particular position of the screen.
2. To insert the spaces between the two values.
3. To give the number of places after the decimal point.
The above things can be achieved by adding modifier to the format specifiers. Modifiers are
placed between the percent sign (%) and the format specifier. A maximum field width, the
number of decimal places, left justification can be specified by using the modifiers.
The number placed between percent sign (%) and the format specifier is called a field width
specifier.
For outputting Integer Numbers
The general format of the field width specifier is

Where W is the minimum field width. If the value to be printed is greater than the
specified field width, the whole value is displayed. If the output is shorter than the length
specified, remaining spaces will be filled by blank spaces and the value is right justified. The
following example illustrates the output of the number 1234 under different formats.

Format

Output
printf(“”%d””,1234) 1 2 3 4
printf(“”%6d””,1234) 1 2 3 4
printf(“”%2d””,1234) 1 2 3 4
printf(“”%-6d””,1234) 1 2 3 4
printf(“”%4d””,-1234) - 1 2 3 4
printf(“”%06d””,1234) 0 0 1 2 3 4

Scanf() Function

scanf() function is used to read the value from the input device. The general format of
scanf () function is

%Wd

scanf (“Control string”, list of address of arguments);

C Programming U23EL1A1

Dept. of Electronics GVN College

The list of address of arguments represents the data items to be read. Each variable name
must be preceded by an ampersand (&). The arguments are actually pointer which indicate
where the data items are stored in the memory. Example of a scanf function is

scanf (“%d %f %c””, &a, &b, &ch);
The control string consists of format specifier, white space character and non-white space
character.The format specifier in scanf are very similar to those used with printf ().
Important points while using scanf are
1. Every basic data type variable must be preceded by (&) sign. In the case of string and
array data type, the data name is not preceded by the character &.
2. Text to be printed is not allowed in scanf statement. For example scanf (“Enter the number
%d”, &a); is not valid.
3. The data items must correspond to the arguments.
4. If two or more data items are entered, they must separated by white space characters.
(blank spaces, tabs or new line characters). Data items may continue into two or more lines.
For example, for the statement

scanf (“”%s %d %f””, name, ®no, &avg);

the data items can be entered in the following methods.
(i) Arul (ii) Arul 12345 (iii) Arul (iv) Arul 12345 85.56
 12345 85.56 12345 85.56
 85.56
Unformatted Functions
getchar () function

getchar() function is used to read one character at a time from the standard input
device. When the getchar() function is called, it waits until a key is pressed and assigns this
character as a value to getchar function. The value is also echoed on the screen.

The getchar() function does not require any argument. But a pair of empty parentheses
must follow the word getchar. In general, the getchar function is written as

Where variable name is a valid C identifier that has been declared as char type.
For example,

char letter ;
letter = getchar ();

will assign the character ‘A’ to the variable letter when pressing A on the keyboard.
getchar ()
accepts all the characters upto the pressing of enter key, but reads the first character only.
putchar() function

Single character can be displayed using the function putchar (). The function putchar
() stands for “put character” and uses a argument. The general form of the putchar() function
is

The argument may be a character variable or an integer value or the character itself contained
within a single quote.

Examples
void main() {
char x = ‘’A’’;

variable name = getchar();

putchar (argument);

C Programming U23EL1A1

Dept. of Electronics GVN College

putchar (x);
putchar (‘’B’’);
}+

gets() function
gets() accepts any line of string including spaces from the standard Input device

(keyboard). gets() stops reading character from keyboard only when the enter key is pressed.
Syntax for gets()

puts() function

puts displays a single / paragraph of text to the standard output device.
Syntax for puts in C :

Sample program :

#include<stdio.h>
#include<conio.h>
void main()
{
char a[20];
gets(a);
puts(a);
getch();
}

1. gets is used to receive user input to the array. gets stops receiving user input only when
the Newline character (Enter Key) is interrupted.
2. puts is used to display them back in the monitor.
Recursion
 Recursion is the process in which a function repeatedly calls itself to perform
calculations. Forexample consider the following:

main()
{
printf(“This is an example of recursion.\n”);
main(); }

When executed this program will produce an output which is something like this,
This is an example of recursion.
This is an example of recursion.

Execution is terminated abruptly; otherwise the execution will continue indefinitely.
Recursion is a special case of function call where a function calls itself. These are very useful
in the situations where solution can be expressed in terms of successively applying same
operation to the subsets of the problem. For example, a recursive function to calculate
factorial of a number n is given below:
The following function calculates factorials recursively:

int fact(int n)
{
int factorial;
if(n==1||n==0)
return(1);
else
factorial=n*fact(n-1);

gets(variable_name);

puts(variable_name);

C Programming U23EL1A1

Dept. of Electronics GVN College

return (factorial);
}

Assume n=4, we call fact(4)
Since n is not equal to 1 0, factorial=n*fact(n-1)
Factorial=4*fact(3) (again call fact function with n=3)
=4*3*fact(2) (again call fact function with n=2)
=4*3*2*fact(1) (again call fact function with n=1)
=4*3*2*1 (terminating condition)
=24
Always have a terminating condition with a recursive function call otherwise function will
never return.

