Timer/Counters in Atmega328P

@ Timer/CounterQ — 8 bit.
@ Timer/Counter1 — 16 bit.
@ Timer/Counter2 — 8 bit.

Timer/Counter can be used to cause time delay, to count
events, or to generate PWM signal.

General Features of Timer/Counter

Y

Oscillator —=| Prescaler
Clk

> Counter/Timer Register

External
Source ,L l

Counter/Timer Flag Interrupt

@ External Source is fed as Clk input to Timer/Counter
Register when used as counter.

@ Oscillator is fed as Clk input to Timer/Counter Register
when used as timer.

@ Prescaler divides the oscillator frequency by a specific
constant.

@ When Timer/Counter register reaches a specific value,a
flag will be set and optionally an interrupt can be issued.

Features of 16-bit Timer/Counter1 with PWM

@ Permits 16-bit PWM

@ Two independent Output Compare Units

@ Double Buffered Output Compare Registers

@ One Input Capture Unit

@ Input Capture Noise Canceler

@ Clear Timer on Capture Match (Auto Reload)

@ Glitch-free, Phase Correct Pulse Width Modulator
@ Variable PWM period

@ Frequency Generator

@ External Event Counter

@ Four independent interrupt sources (TOV1, OCF1A,
OCF1B, ICF1)

Timer/Counter1 Block Diagram

Count
TOWn
'_._._”_ —i- [ird g |
Coneri Logic
CHrecton . - []

& - ey
L] i
= - = - lf." - I‘_:": = OCmA
Charmraton
iy ol DCRnA i E
| mas ocnl
: .I,-:-,;. = inlReg
g . i i Vil = —
WWareiorm
2 —I. : - Ll 5 o] #=|OCnB
£ 2 :
= DCHing 1 [From Anaiog
aat I Compaenios Oupul
i = ICFm (I Rag
* 1 d
] Ea .
- | rr™ Exig e
§ E"' I Detector | Cancogr [
A — J e
| TCCRNA | [TECAnN |

[3
Sl
Y

Registers Pertaining to Timer/Counter1

Bil 7 5]] 4 i) 1 [1]

[OxES) rCHTI[15:8] TCNTIH
(D Bat) TCNT I 7:0] TCNTIL
ReadWrite R W W W W R W Ry

Initial Value 1] 1] 0 1] [1] i 0o il

Timer/Counter1 High and Low bytes

B 7 & 5 4 | 2]]

(OB OCRIAING:E] OCRIAH
(DxER) R LAT:0) CRIAL
Head Wrin R Riw R R Rw R R R

Initial Value L] i] o 1] o 1]

Output Compare Register1A High and Low Bytes

Bl T fa S 4] 1 | il

{[chE) OCR1B) 15: 8] MCRIEH
LR LN] OCHIB] 7:@] OCRIBL
Read Write A A W B W HW W W

Inktlal Valse]] 0]]] il i

Output Compare Register1B High and Low Bytes

Registers Pertaining to Timer/Counter1

B
[By
Read Wriie

Initial Value

Hin
{0xA1)
Reacd Wi

Initial Value

Bit
(082}

Read"Wrise

Initial i

| COMIAL

COMIAD | COMIBI COMI B = | = WML

WMo | TCCRIA
R W W BLw i R R A
Timer/Counter Control Register1A
T G 5 4 1 2 1 o
I ICMCL ICES] - | WGMII | WGMIZ | Csiz Csll C510] TCCHRIB
R LW 34 W W R o (LY
Timer/Counter Control Register1B
b i 4 3 2 1 1]
| Focia | FOCIE | - [- | - | - - - | Toocmic
R Rw 11 R 1] R R R

0

] 1] i il 1]

Timer/Counter Control Register1C

Registers Pertaining to Timer/Counter1

Hit r L1) 4] ¥ | 1]

(A] [| | ICIEL | | | OCIELR OCIEIA TOIED I TIMSKI
Head W (] [1] R K R R (LA B

Inal Valoe i L1] i] 1] L1 [1]

Timer/Counter1 Interrupt Mask Register

Bi 7 & 5 + 1 I o

{1 16 (05365 | - - I - | - | DCFIB | OCFIA TOVE | TIFRI
ResdWrie R] W R R RAW R R

Initial Value 1] 0] o] o o

Timer/Counter1 Interrupt Flag Register1

@ By setting appropriate bits in TIMSK1 the corresponding
interrupt can be enabled.

@ When ISR is executed corresponding to a timer/counter1
event, the corresponding flag is cleared in the TIFR1.

@ By setting appropriate bits in TIFR1 the corresponding flag
can be cleared.

Timer/Counter1 Mode 0 and Mode 4 Interrupt Vectors

| ISR Name to be used in C Source of Interrupt
TIMER1_CAPT _vect Timer/Counter1 Capture Event

TIMER1_COMPA _vect | Timer/Counteri Compare Match A

TIMER1_COMPB _vect | Timer/Counter1 Compare Match B
TIMER1 OVF vect Timer/Counter1 Overflow

Modes of Operation of Timer/Counter

@ Normal Mode (also known as Mode 0)

@ Clear Timer on Compare (CTC) Match Mode (also known
as Mode 4 and Mode 12)

e In Mode 4 comparison is done with OCR1A.
e In Mode 12 comparison is done with ICR1.

@ Fast PWM Mode
@ Phase Correct PWM Mode
@ Phase and Frequency Correct PWM Mode
The last three modes are PWM modes. Here we discuss only

Normal Mode and CTC mode. Mode selection can be made by
setting appropriate bits in TCCR1A and TCCR1B registers.

Setting Timer/Counter1 Clock Source and Prescaler

CS12 | CS11 | CS10 Effect

0 0 No clock (Timer/Counter stops)
1 clk (no prescaling)
0 clk/8

1 clk/64

0 clk/256
]

0

1

clk/1024
Ext. clk on T1 pin, falling edge
Ext. clk on T1 pin, rising edge

—_ - = = OO OO

@ CS12, CS11 and CS10 bits are in TCCR1B register.

@ Timer/Counteri is inactive when no clock source is
selected.

@ Timer/Counter1 starts when clock source is set.

Normal Mode (Mode 0)

@ This mode can be selected by making WGM13 = 0,
WGM12 =0 in TCCR1B and WGM11 =0, WGM10 =10 in
TCCRI1A.

@ In this mode there is no comparison with either ICR1 or
OCR1A.

@ In this mode the timer counts up for every clock cycle until
it reaches $FFFF (also referred to as MAX) and then
resets to $0000 in the next clock cycle.

@ When the timer value changes from $FFFF to $0000, the
TOVA1 flag is set.

@ An interrupt can be generated when TOV1 flag is set by
setting TOIE1 bit in TIMSK1.

CTC Mode (Mode 4)

@ This mode can be selected by making WGM13 = 0,
WGM12 =1 in TCCR1B and WGM11 =0, WGM10 =0 in
TCCR1A.

@ In this mode the timer counts up until it reaches the value
stored in OCR1A (also referred to as TOP) and then resets
from TOP to $0000.

@ When the timer resets from TOP to $0000, the OCF1A flag
will be set.

@ An interrupt can be generated when OCF1A flag is set by
setting OCIE1A bit in TIMSK1.

Example C Statements to Set Up Timer1

/ /EXAMPLE- 1

//Write C statements to setup Timer/Counterl in Mode O

//as a timer. Select a prescaler value of 64. It i1s not necessary
f/to cause 1nterrupt because of timer overflow.

TCCR1A=0x00; TIMSK1=0x00;

TCCR1B=0x03;

J JEXAMPLE- 2

//Write C statement to setup Timer/Counterl i1n Mode O as a timer.
//Select a prescaler value of 64. Enable timer overflow interrupt.
TCCR1A=0x00; TIMSK1=0x01; seil);

TCCR1B=0x03;

[/ JEXAMPLE- 3

f/Write C statement to setup Timer/Counterl i1n Mode 4 with prescaler
f/value 8; Interrupt not necessary. Assume that the number to be
//loaded 1n OCR1 i1s 3DOB.

TCCR1A=0x00; OCR1BH=Dx3D;

OCR1BL=0x08; TIMSK1=0x00; TCCR1B=0x0A;

Maximum Delay using Timer 1 in Mode O

Calculate maximum time delay that can be realized using Timer
1 in Mode 0 with prescaler value of 1024. Assume that MCU
clock frequency is 16 MHz.

Frequency of clock signal applied to Timer 1 is given by

16 x 108
=—_ =15625H
fc.fk 1024 9625 Hz

Therefore maximum delay possible is

65536

Timer1 Initial Count in Mode 0 for a Given Delay

Assuming MCU clock frequency to be 16 MHz and prescaler
value of 1024, find the initial number N to be loaded in TCNT1H
and TCNT1L to get a time delay close to 1 second in Mode 0.

No. of steps required to cause a delay of 1 s is given by
n=15625x 1 = 15625 = 65535 — N + 1

Therefore
N = (49911)10 = OxC2F7

So, TCNT1H = C2 and TCNT2L = F7.

Using Timer1 to cause Delay

Write C code to setup Timer1 (16-bit timer) of Atmega328P
MCU to give a 1 s time delay assuming that the MCU is
operating at 16 MHz clock with prescaler set to 1024. Use timer
interrupt to blink an LED connected to an output port line. Show
timer calculations and hardware connections clearly.

The number to be loaded in Output Compare Register1
(OCR1) is given by

16 % 108
1024

OCR1 = (X 1) —1=(15624)1¢ = (3D08)1¢

Timer/Counter1 Program Using Interrupt

#nclude
#include

int main(void)

{
OCR1A = Ox3D0Og;
TCCRIB |= (1 =< WGM12); // Mode 4, CTC on OCR1A
TIMSK1 |= (1 =< OCIElA); //Set interrupt on compare match
TCCRI1B |= (1 =< cs12) | (1 == C510); //Prescaler to 1024.
sei(); // enable interrupts
while (1)
{ " 3
,-"_.-" we nave a '..\"OFH].TII‘;I T',LITI‘E'I"
'
h
% SR (TIMER1 COMPA vect)

// action to be done every 1 sec

}

Using TimerO as Counter

Assuming that a 1 Hz clock pulse is fed into pin TO of
Atmega328P MCU, write C code to use the TOVO flag to extend
Timer0 to a 16-bit counter and display the counter on PORTC
and PORTD.

int main (void)

PORTB = Ox01; /fEnable pull-up resistor E
DDRC = OxFF; /Configure Port C as output.
DDRD = OxFF; fConfigure Port D as output.
TCCRO = Ox00; fInitialize clock source.

while(1)

do
{
PORTC = TCNTO;
}while (TIFR & (0Oxle<TOMO)==0)://Wait for TOVD to became 1.

TIFR = Ox1<<TOVO; //Clear TOVO.
PORTD ++; fIncrement PORTD.
}
return O;

