Whatis AVR ?

® Modified Harvard architecture 8-bit RISC single
chip microcontroller

@ Complete System-on-a-chip
% On Board Memory (FLASH, SRAM & EEPROM)
“ On Board Peripherals

@ Advanced (for 8 bit processors) technology
@ Developed by Atmel in 1996
@ First In-house CPU design by Atmel

AVR Family

@ 8 Bit tinyAVR

2 Small package — as small as 6 pins
@ 8 Bit megaAVR

¥ Wide variety of configurations and packages
@ 8 /16 Bit AVR XMEGA

2 Second Generation Technology

@ 32 Bit AVR UC3

@ Higher computational throughput

Presentation Overview

@ Processor core

@ Peripherals

@ Hardware Example — Polulu 3pi robot

@ Development Environments

@ Software Example - PID algorithm walkthrough

Processor Core

@ What is Harvard Architecture?
@ Before we can answer that...

Von Neumann Model for Stored
Program Computers

Central Processing Unit (CPU

Harvard Architecture

HARVARD ARCHITECTURE
MICROPROCESSOR

- = -
DATA | INSTRUCTION |
MEMORY | MEMORY
: CONTROLL

DATA | ’1 kADDR 9 J INSTRUCTION

-

j . l
N . A - |
—— |
; ALU . CONTROL |
our? | COMTROL

' |

i i

STATUS [anm(J

Harvard Architecture Advantages

@ Separate instruction and data paths
@ Simultaneous accesses to instructions & data

@ Hardware can be optimized for access type and
bus width.

AVR Architecture

Diatn Bl B-bit

o Progeam |‘_ I Stmiun |__‘
Program | Coanior and Conirol
Marmairy -

neinchon
Fgistar L

- 2z
Genoml |
Fnsimrs
=]
1 ! N
Control Lines |
B I
-1

i

T
i
Hgi
-

E

HlE

Dimct Acidmssing

gl|3

- Dais s

Modified Harvard Architecture

@ Special instructions can access data from program
space.

@ Data memory is more expensive than program
memory

@ Don’t waste data memory for non-volatile data

What is RISC?

@ Reduced Instruction Set Computer

@ As compared to Complex Instruction Set
Computers, i.e. x86

@ Assumption: Simpler instructions execute faster
@ Optimized most used instructions

@ Other RISC machines: ARM, PowerPC, SPARC

@ Became popular in mid 1990s

Characteristics of RISC Processors

@ Faster clock rates

@ Single cycle instructions (20 MIPS @ 20 MHz)
@ Better compiler optimization

@ Typically no divide instruction in core

AVR Register File

@ 32 8 Bit registers
@ Mapped to address 0-31 in data space

@ Most instructions can access any register and
complete in one cycle

@ Last 3 register pairs can be used as 3 16 bit index
registers

@ 32 bit stack pointer

Register File

Q02

[IER T
0x18
Ox1C
0x1D
0x1E
Ox1F

x regisier low byte
* register high byle
y register low byte
y regisier high byte
z regisier low byte
z regisler high byle

AVR Memory
FLASH

@ Non-volatile program space storage
@ 16 Bit width

@ Some devices have separate lockable boot
section

@ At least 10,000 write/erase cycles

AVR Memories
FLASH —Memory Map

ATmega 48 ATmega 88/168/328
0%000 o 0x000
Application Flash Application Flash
Ox1FFF
Ox3FFF
T Boot Flash D:TFFF

AVR Memories
SRAM

@ Data space storage
@ 8 Bit width

AVR Memories
SRAM - Memory Map

32 Registers

64 1/0O Registers

160 External I/O Reg

Internal SRAM
(512/1024/2048x8)

External SRAM

ee0000 = Ox001F

0ee0020 - Ox0D05F

Qee00060— Ox00FF

O0x0100

Ox04FF/OxEFF/0=BFF

AVR Memories
EEPROM

@ Electrically Erasable Programmable Read Only
Memory

@ 8 bit width
@ Requires special write sequence

@ Non-volatile storage for program specific data,
constants, etc.

@ At least 100,000 write/erase cycles

AVR Memories

DEVICE FLASH EEPROM SRAM
ATmegad8A 4K Bytes 256 Bytes 512 Bytes
ATmegad8PA 4K Bytes 256 Bytes 512 Bytes
ATmega88A 8K Bytes 512 Bytes 1K Bytes
ATmegaB8PA 8K Bytes 512 Bytes 1K Bytes
ATmegal6BA 16K Bytes 512 Bytes 1K Bytes
ATmegal68PA 16K Bytes 512 Bytes 1K Bytes
ATmega328 32K Bytes 1K Bytes 2K Bytes

ATmega328P 32K Bytes 1K Bytes 2K Bytes

Memory Mapped |/O Space

@ |/O registers visible in data space
“ |/O can be accessed using same instructions as data
“ Compilers can treat I/O space as data access
@ Bit manipulation instructions
@ Set/Clear single /O bits
“ Only work on lower memory addresses

ALU — Arithmetic Logic Unit

@ Directly connected to all 32 general purpose
registers

@ Operations between registers executed within a
single clock cycle

@ Supports arithmetic, logic and bit functions
@ On-chip 2-cycle Multiplier

Instruction Set

@ 131 instructions
@ Arithmetic & Logic
“ Branch
“ Bit set/clear/test
2 Data transfer
2 MCU control

Instruction Timing

@ Register <> register in 1 cycle

@ Register «<» memory in 2 cycles

@ Branch instruction 1-2 cycles

@ Subroutine call & return 3-5 cycles

@ Some operations may take longer for external
memory

Pipelined Execution

T T2 T3 T4
I I i]
I 1 1]
) I L))
Wil el N A] \
CRU | | 1
15t Instruction Fetch —) :
1

18t Instruction Execute

2nd Instruction Fetch

3rd Instruction Fetch
3rd Instruction Execute

I 1

| 1

I I

= I 1

2nd Instruction Execule I i
1 1

i i

I I

i |

I |

4th Instruction Fetch

|

AVR Clock System

@ Clock control module generates clocks for
memory and IO devices

@ Multiple internal clock sources

@ Provisions for external crystal clock source (max
20 MHz)

@ Defaultis internal RC 8 MHz oscillator with ~ 8
prescale yielding 1 MHz CPU clock

@ Default is only 5-10% accurate

Clock Sources

Timer/
T'"OTHEW"I el Counters
e
Crystal Modules
Osclllator
ADC
Extemal Clock _——] é‘i:;
Prescaler
Conirol CPU Core
Low Freq Crystal +8
Osciliator RAM
Calibrated RC FLASH &
Oscillator EEPROM

Power Management

@ Multiple power down modes

2 Power down mode

“ Wake on external reset or watchdog reset
2 Power save mode

“ Wake on timer events

“ Several standby modes
@ Unused modules can be shut down

Reset Sources

@ Power on reset

@ External reset

@ Watchdog system reset

@ Brown out detect (BOD) reset

Interrupts

@ ATmega328 has 26 reset/interrupt sources
@ 1 Reset source

@ 2 External interrupt sources

@ |/O Pin state change on all 24 GPIO pins

@ Peripheral device events

Interrupt Vectors

@ Each vector is a 2 word jump instruction

@ Vectors start at program memory address 0
@ Reset vector is at address 0

@ Sample vector table:

Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler
0x0002 jmp EXT INTO ; IRQO Handler
0x0004 jmp EXT INT1 ; IRQ1 Handler
0x00086 jmp PBCINTO ; PCINTO Handler
0=x0008 jmp PCINTI1 ; PCINT1 Handler

Fuses

@ Fuses configure system parameters
@ Clock selection and options
2 Boot options
2 Some |0 pin configurations
2 Reset options

@ Three 8 bit fuse registers

@ Use caution! Some configurations can put the
device in an unusable state!

ATmega Peripherals

@ 23 General Purpose |0 Bits

® Two 8 bit & one 16 bit timer/counters

@ Real time counter with separate oscillator
@ 6 PWM Channels

@ 6 or 8 ADC channels (depends on package)
@ Serial USART

@ SPI & I°C Serial Interfaces

@ Analog comparator

@ Programmable watchdog timer

General Purpose IO Ports

@ Three 8 Bit |0 Ports

“ Port B, Port C & Port D

“ Pins identified as PBx, PCx or PDx (x=0..7)
@ Each pin can be configured as:

@ Input with internal pull-up

“ |nput with no pull-up

@ Qutput low

“ Qutput high

Alternate Port Functions

@ Most port pins have alternate functions
@ Internal peripherals use the alternate functions

@ Each port pin can be assigned only one function at
a time

Alternate Pins for PDIP Package

(PCINT14/RESET) PC&]
(PCINT1&/RXD) PDO]
(PCINT17/TXD) PD1]
(PCINT18INTO) PD2 [

(PCINT19/QC2E/NT1) PD3]
(PCINT2/XCK/TO) PD4 [
vCC O

GND [
(PCINTE/XTAL1/TOSC1) PEE O]
(PCINTT/XTALZTOSC2) PET
(PCINT21/OCORT1) PD5 O]
(PCINT22/0COA/AIND) PDE
(PCINT2VAINT) PD7 O
(PCINTO/CLKO/CP1) PBO O

L= = T T = R o T - T]

10
"
12
13
14

28
27
26
25
24
23
22
21
20
10
18
17
16
15

1 PCS (ADCS/SCLPCINT13)
[PC4 (ADC4/SDAPCINT12)
1 PC3 (ADCAPCINT11)

[PC2 (ADC2/PCINT10)

1 PC1 (ADC1/PCINTS)

] PCO (ADCWPCINTS)

] GND

] AREF

[AVCC

1 PBS (SCK/PCINTS)

(1 PB4 (MISO/PCINT4)

1 PR3 (MOSVOC2ZA/PCINTY
O PB2 (SS/0C1R/PCINTZ)

[PR1 (OC1APCINTI)

Timer / Counters

@ 8/16 Bit register
“ Increments or decrements on every clock cycle
“ Can be read on data bus
2 Qutput feeds waveform generator

@ Clock Sources

© Internal from clock prescaler
@ External Tn Pin (Uses 1 port pin)

Timer / Counters

@ Multiple Operating modes
2 Simple timer / counter

% Output Compare Function
» Waveform generator
@ Clear/set/toggle on match
“ Frequency control
¥ Pulse Width Modulation (PWM)

Timer / Counter Block Diagram

DATA BUS

T e | R
A

=
v [2]—f oo |] ocna

TCCRnA OCRnA >

FHAENE
Tn > ook > TeNmn
N
Ii:- IRQ

TCCRNB OCRnB -
A X 5= == > ocnB

| | =
< A" N \L} |—| |—|

Controlling Frequency

@ Use Clear Timer on Compare Match (CTC) Mode
@ OCnx Toggles on Compare Match

TOP = OCRnx

OCnx
(toggle) |

Pulse Width Modulation (PWM)

@ Dynamically change duty cycle of a waveform
@ Used to control motor speed

® 1 -

® | LI L] L
©] | I |

© I L L L

PWM with AVR Timers

@ Fast PWM Mode
@ Counter counts from BOTTOM (0) to MAX
2 Counter reset to 0 at MAX
2 OCnx cleared at TOP
“ OCnx set at BOTTOM

PWM Waveform Generation

Claar on
TOP

e
MAX
TOP \

BOTTOM / :
Seton / ;

BOTTOM

B Sy

Timer Capture Mode

@ Timer 1 has capture mode

@ Capture can be triggered by ICP1 pin or ACO from
analog comparator

@ Capture event copies timer into input capture
register ICR1

@ Can be used to time external events or measure
pulse widths

@ Range finders generate pulse width proportional
to distance

Analog to Digital Converter (ADC)

@ 10 Bit Successive Approximation ADC
@ 8 Channel multiplexer using port pins ADCO-7
@ Max conversion time 260 usec.

Analog Comparator

@ Compares voltage between pins AINO and AIN1
@ Asserts ACO when AINO > AIN1

@ ACO can trigger timer capture function
© Range finders indicate distance with pulse with
© Timer capture mode can compute pulse width

Serial Peripheral Interface

@ Industry standard serial protocol for
communication between local devices

@ Master/Slave protocol
@ 3 Wire interface
@ Slaves addressed via Slave Select (SS) inputs

SPI Bus — Signal Descriptions

SCLK
MOSI
MISO
S5

Serial Clock
Master Out Slave In
Master In Slave Out

Slave Select

SOLK
MO%

Yy

- MIS0

L
=

—=| 501K
- MOSI
M0
— |5

12C Bus Interface

® Industry standard serial protocol for
communication between local devices

@ Master/Slave protocol

@ 2 Wire interface

@ Byte oriented messages

@ Slave address embedded in command

12C Bus Signal Descriptions

SDA Serial Data

SCL Serial Clock
L51] LED STATIE
CONTROLLER ODRNER FLAM DR
EEFRCM

E[E

e e o
HICRD -
GATE COMTROLLE
ARRAY ADC B
T

Typical SPI & I°C Devices
@ EEPROM

@ |O Expanders

@ Real Time Clocks

@ ADC & DAC

@ Temperature sensors

@ Ultrasonic range finders

@ Compass

@ Servo / Motor Controller

@ LED Display

USART

@ Universal Synchronous and Asynchronous serial
Receiver and Transmitter

@ Full Duplex Operation
@ High Resolution Baud Rate Generator
@ Can provide serial terminal interface

Programming Memory - JTAG

@ Some chips have JTAG interface
“ |Industry standard for debugging chips in circuit
2 Connect to special JTAG signals

% Can program
2 FLASH
% EEPROM
@ All fuses
¥ Lock bits

Programming Memory - ISP

@ |SP (In-System Programmer)
@ Connect to 6 or 10 pin connector
@ SPl interface

@ Special cable required

@ Can program
v FLASH
2 EEPROM
“ Some fuses
¥ Lock bits

Hardware Example —Polulu 3nt

optional user LEDs
on pins PD1 and PD7

battery charger ;
connecion 3 piezo buzzer

{on pin PB2)

30:1 Micra
4 Metal
i Gearmolors

(not included)

bt e G
"-.-1 i
optional
power LED

push-on/push-off

power bulton ISP programming

connaclor pin 1

removable Bx2
character LCD

user pushbuttons
{on pins PB1, PB4, and PB5)

31 Port Pins: User LEDs

R25b 1k
R25a 1k
Bl o
R26b 1k
N D4a
ppy| R26a 1k GREEN !\;x ¥
VAT AV

3x Port Pins : LCD Display & Buttons

5 .—lr -
B a
| =W S a.l:
1 — = tapanToy
M - b
L]
Fosin
T l*..'.| L i
D3a
0

D 3388BBEE.2aslsl

I

—
A

—

e e R
i i 4_\'-
Sag praracis LCD
Bl ! Pl N Ok i

3t ADC — IR Sensors

ki e
AREF =l =0
voc
mnm}ﬂ—ﬂﬁ'—ﬂ; il J_ =
PO (THD) 22 nF = =
R13 g
PO (ADCT) PCH T
PC1 (ADC1) ez 20"
PC3 (ABCI) e
o ; &23 |_"'5‘
25 (ADCS/SCL) P L
ADCS lo1_ADCS e PN -1
ADCT lo22 ADCT o 250 .‘]
4 e 22
§ PCE WO Lt
PCs (FESET) &5 vEC cas |
L 22 nF _| —
R15 R16 RIT &
ik s PEY A men—id
micomnimolier 20
_1 = = Vo
t Swa 22 I1J-ﬂ i ==
e RESET B
0.1 wF| I P4 'Ejv 4
=20

NEC AVTC

PCD

s
(%]

- |

2

¥] b
38

1

VBQOST

PR

_:1 2

¥

Em g

31t Motor Control

@ CW: PD5 & PD6 PWM mode (OCOB, OCOA)
@ CCW: PD3 & PB3 PWM mode (OC2B, OC2A)
@ Motor interface uses H-Bridge controller

@ Speed and direction controlled by port bits
@ Controller standby controlled by PC6

Motor Off

\ L \
\’ -
101
% %

Motor CW

PDS=1 > 1\ 2 \

\ 3 4 |< PD6 (OCOA) PMW

I

Motor CCW

l\n-

\ - 2 /|« PB3(0OC2A) PMW

ol

PD3=1 >| 3 4 \

3nt Reflectance Sensors

@ PC5 enables the IR emitters
@ One port pin for each of 5 sensors, PC0-4

@ Port pin used as input and output

¥ Set pin as output high for 10 psec to charge RC
circuit

@ Set pin as input

¥ Measure time for voltage to drop (using TCNT2)

“ Time indicates level of light

Measuring Reflectance
CEIT i

22 nF

w2 |
PO A~
20

1. Output: 10 psec pulse on PCO

2. Input: measure decay

t indicates amount— s> <
of reflected light :

3nt Analog Inputs

@ ADCG6: battery voltage monitor
@ ADC7: reads trimmer pot voltage

3wt Miscellaneous

@ Buzzer: Timerl PB2 (OC1B)

@ User defined (can be USART) : PDO, PD1
@ Device (ISP) Programming: PB3, PB4, PB5
@ 20 MHz crystal: PB6, PB7

Getting Started

@ Choose a language

2 BASCOM

9 C/C++

2 Assembler (machine language)
@ Choose a platform

“ Linux

2 Windows

What you need

@ Text Editor / IDE

@ Tool Chain
2 Compiler
@ Libraries

@ Programmer (cable & software)

BASCOM

@ Windows based BASIC compiler for AVR Family
@ Complete IDE

@ Includes simulator

@ Extensive library for AVR peripheral control

@ Includes ISP programmer
@ Demo versions available — limited code space

BASCOM IDE

HASCIA-AVIE IDE

1T W rogrrae T iles WUES Elect nor

e Lo Iock Cptiond fiedow Feip - e
Do @R | w|eor]e|e]] eS|]n|-o|
Suls - Loatesd >
Bregfile = “slldet dat =
Sorymtal - 4000000
BEim
Slib LI
r simulation (o vork correct y need Lo Epecil
ik the pins sre fuismed
B 1 we dont use the RV oplien of the LD in
B.a
] optionel for lod with chil s
Lty 4 the data bite must be ifn & nibbhle te @
-
el i
B 7
Cont iy Lodpin = Pin Bs = Porth 0O E « Porth 2 Dhd4 = Port
Comlfig Led = 16 = 7
Clm
Tyl "tesi”
Lowor | i nm
Lod “1214567
Encl i
€ »
(TR Irmet

BASCOM AVR Support

BASCOM-AVR Options
Compdat |t¢r_rpf-.|r-:ahm| Ervicrenent | Serudates | Progeasmmet | Mordor | Prndes |

Chip | Output | Communication | 12C. P, IWIRE LCD |

LCD type [T |~| Enabls PORTE3 =

BUS mode Data mode as FORTB2 =
) ;: A :'_., pgz FORTBY? =
pgg FORTBE =

LCD-address 0% pgs PORTBS -~
RS-addess pO00 pgy FPORTBA =

Make upper 3 btz 1 in LCD) designes

Defott S0k [X Cancel |

C / C++ / Assembler Tool chain

@ Linux

2 AVR-GCC

¥ Based on GNU toolset
“ Open Source AVR-LIBC libraries

@ Windows

< WIN-AVR
“ Port of AVR-GCC to Windows

IDES

@ Linux
@ Editors & command line tools
“ Eclipse IDE

@ Windows

2 Atmel AVR Studio
@ Includes ISP programming support

@ Eclipse IDE

Other tools

@ STK 200/300/400/500

“ Atmel AVR starter kit and development system
“ Interfaces to AVR Studio

@ avrdude
@ Programming support for all memories

Polulu Recommended Tools

@ Win-AVR
@ AVR-Studio
@ Proprietary libraries

Software Example
3n PID Line Follower

@ PID Algorithm
@ PID Code Walkthrough

Why PID?

@ Simple Line Follower

@ Three sensors can provide position information
@ left of center
“ on center
@ right of sensors

@ React to current position only

What to do?

@ Three choices:

(’® @ﬁ %

Deficiencies

Guaranteed to zig-zag
back and fort h
<7

Better—PID

@ Anticipates where we want to go
@ Continuously adjusts direction to get there
@ Adjustable constants control behavior

PID Algorithm

_ + Error
Set point —— ¥ B I
(center line)

Output
>

Process

—

\@P/

PID Components

@ (P) Proportional
2 Where we are relative to where we want to be.
@ (1) Integral
2 Sum of previous errors. History of where we were.
@ (D) Derivative
@ Rate of change. Affects how fast we react to
changes.

3n PID Implementation

@ Useful functions

“ read_line
“ Returns a value between 0 — 4000
“ 0-1000: robot is far right of line
« 1000 - 3000: robot is approximately centered
¥ 3000 —4000: robot is far left of line
@ set_motors
@ Set speed and direction of both motors
@ -255—0: reverse direction
@ 0-255: forward direction

3n PID Implementation
PROGMEM Example

// Introductory messages. The "PROGMEM" identifier causes the data to
// go into program space.

const char welcome linel[] PROGMEM = " Pololu";

const char welcome_lineZ[] PROGMEM = "3\xf7 Robot";

const char demo name linel[] PROGMEM = "PID Lina";

const char d.imnﬁnm__linaz[] PROGMEM = "Follower":

/! B couple of simple tunes, stored in program space.
const char walcome(] PROGMEM = ">g32>>c32";
const char go[] PROGMEM = "Ll6 cdegregd" ;A

3n PID Implementation
Sensor calibration

/# Auto-calibration: turn right and left while calibrating the
f/ sensors.
for (counter=0;counter<il;counter++)
{
if ([counter < 20 || counter >= 60)
set motors (40,=40) ;
alse
set_motors (-40,40) ;

// This function records a set of sensor readings and keeps
// track of the minimum and maximum values encountered. The
/f IR_EMITTERS ON argument means that the IR LEDs will be

// turned on during the reading, which is usually what you
// want.

calibrate line senscors (IR EMITTERS ON)

// Since our counter runs to 80, the total delay will be
/f BO*20 = 1600 ms.
delay ms (20} ;

}

sat_motors (0,0) ;

3n PID Implementation
Compute PID values

S/ Get the position of the line. Note that we *must* provide
/{ the "sensors" argument to read line() here, even though we
S/ are not interested in the individual sensor readings.
unsigned int position = read line(sensors,IR EMITTERS ON):

/{ The "proportional® term should be 0 when we are on the line.
int proportional = ((int)position}) - 2000;

/¢ Compute the derivative (change) and integral (sum) of the position.
int derivative = proportional - last proportional:
integral += proportional;

// Remember the last position.
last_proportional = proportional;

// Compute the difference between the two motor power settings,

ff ml = m2, If this is a positive number the rabot will turn

£/ to the right. If it is a negative number, the robot will

// turn te the left, and the magnitude of the number determines

S/ the sharpness of tha turn.

int power difference = proportional/2Z0 + integral/l12000 + derivative*7/4;

3n PID Implementation
Set motor speeds

S/ Compute the actual motor settings. We never set either motor
// to a negative walue.
const int max = 250;
if (power difference > max)
power_difference = max;
if (power_difference < -max)
power differance = =max;

/{ One Motor will always be full speed

if (power difference < 0)

set_motors (max+power difference, max);
else

set motors (max, max-power differance);

Arduino

@ Open source elections prototyping platform
@ Hardware

2 Based on Atmega (328 & others)
@ Software

“ Wiring language, based on c++
% Boot loader
“ Arduino IDE

ATmega Families

® ATmega 48/88/168/328
2 What we have been talking about

@ ATmega 164/324/644/1284
“ JTAG interface
2 All 410 Ports A,B,C&D
2 More memory

ATmega Packages

@ PDIP — Plastic Dual In-line Package
2 Good for hobbyists

@ TQFP —Thin Quad Flat Pack
@ Surface mount

@ MLF — MicroLeadFrame
@ 28 & 32 pin
@ Surface mount / higher temperature

