Python Flow Control

if...else

for Loop

while loop

Break and continue
Pass statement

if...else

» Decision making is required when we want to
execute a code only if a certain condition is satisfied.

» The if...elif...else statement is used in Python for
decision making.

if test expression:
statement(s)

* In Python, the body of the if statement is indicated by
the indentation.

* Body starts with an indentation and the first
unindented line marks the end.

» Python interprets non-zero values
as True. None and 0 are interpreted as False.

If the number is positive, we print an appropriate message

num = 3
if num > @:

print(num, "is a positive number.")
print("This is always printed.")

num = -1
if num > @:

print(num, "is a positive number.")
print("This is also always printed.”)

Exercise — if

» Write a program to give a discount of
10% if the total bill amount exceeds 1000.

ftprogram to give discount if the total amount is greater than 18@8.

shoppingAmount = int(input("Enter the shopping Amount : "))

if(shoppingAmount > 1€ee):
discount = 1@ / 18@ * shoppingAmount

print('Discount = ' , discount)
shoppinglAmount -= discount

print('Final Shopping Amount = " , shoppingAmount}

if...else Statement

» The if..else statement evaluates test expression and will
execute body of if only when test condition is True.

« If the condition is False, body of else is executed.

Indentation is used to separate the blocks.
Syntax of if...else |
Test Faise
if test expression: EXpoEa—n

Body of if
True
else:

'] ¥
Body of else

Body af if Body of else

-

L]

Fig: Dparation of il. else stabomsent

Program checks if the number is positive or negative
And displays an appropriate message

num = 3
Try these two variations as well.

num = -5
num e

Il

if num >= @:

print("Positive or Zero")
else:

print("Negative number"ﬂ

Exercise

* Write a program to check if a given
number is a multiple of 5.

if...elif...else

The elif is short for else if. It allows us
to check for multiple expressions.

If the condition for if is False, it checks
the condition of the next elif block
and so on.

If all the conditions are False, body of
else is executed.

Only one block among the
several if...elif...else blocks is executed
according to the condition.

The if block can have only
one else block. But it can have
multiple elifblocks.

Syntax of if...elif

if test expression:
Body of if

elif test expression:
Body of elif

else:
Body of else

...else

if num > 0:

print ("Positive")
else:

if num < 0:
print ("Negative")
e:
print ("Zero")

el

1]

if num > O:

print ("Positive")
elif num < 0:

print ("Negative")
else:

print ("Zexo")

Programming Task

e Minimum age to Cast your Vote : |18
* Minimum age to Contest an Election: 25

» Given the age verify if the person can
vote and can s(he) contest an election.

Exercise

Write a program to check if a given year is leap year or not.

» Logic:
= if a year is not divisible by 4, its not a leap year.
¢ If a year is divisible by 4 and not divisible by 100, it’s a leap year.

« |f a year is divisible by 4 and 100 then it should be divisible by 400
to be a leap year

it Python program to check if the input year is a leap year or not
year = int(input("Enter a year: "))

if (year ¥ 4) == 8:
if (year % 100) == @:
if (year % 400) == 0:
print(year , "is a leap year")
else:
print(year , "is not a leap year")
else:
print(year, "is a leap year")
else:
print(year , "is not a leap year")

it Python program to check if the input year is a leap year or not

year = int{input({"Enter a year: "))

if (year ¥ 4) == @ and (year ¥ 100) |= @:
print{year , "is a leap year")
else:
if ((year % 18@) == @) and ((year % 488) == @):
print(year , "is a leap year")
else:
print(year , "is not a leap year”)
I

#program to check if a given year is leap year or nn:l
year = int{input("Enter a year: "))

if ((year % 4) @ and (year % 18@) != @) or ((year % 18@) @ and (year % 48@)
= B):
print(year , “"is a leap year")
else:
print(year , "is not a leap year")

Loops

* Loops are used in programming to
repeat a specific block of code.

» Looping Constructs in Python
while
> for

While loop

* The while loop in Python is used to iterate over
a block of code as long as the test expression
(condition) is true.

* We generally use this loop when we don't know
beforehand, the number of times to iterate.

Syntax of while Loop

while test_expression:
Body of while

' H“" #program to calculate the ged of two numbers
~__{ a = int(input("Enter first number"))

b = int(input(“Enter second number"))

while(a != b): while(b = @):
if(a > b): i
‘a-=b a=b
else: b = temp
i
print("Ged =" , a)

print("Ged = ", a)

* Write a program to print the number of
digits of a given number using while loop.

num = int {input ("Enter a number "))
digits = 0
num != 0:
num = num // 10;
print ("Hum = " , num)

digits = digits + 1

print ("Number of digits = " , digits])

Slprint("Program to verify if a given number is prime ")
n = int(input ("Enter the number "))

div = 2
flag = True
while div < n:
ifn% div == 0:
flag = False
div = div + 1

if flag == True:
print ("Prime")
else:
print ("Not Prime")

For loop

» For loops iterate over a given sequence.

Syntax of for Loop

for val in sequence:
Body of for

» Here, val is the variable that takes the value of the item
inside the sequence on each iteration.

* Loop continues until we reach the last item in the
sequence. The body of for loop is separated from the
rest of the code using indentation.

Program to find the sum of all numbers stored in a list

List of numbers
numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum
totalSum = @

iterate over the list
for val in numbers:
totalSum = totalSum + val

print("The sum is", totalSum)

Range Function

* We can generate a sequence of numbers
using range() function.

» range(10) will generate numbers from 0 to 9 (10
numbers).

Qutput: range(0, 10)
print(range(10))

» To force this function to output all the items, we can
use the function list().

Output: [P, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print(list(range(10)))

Range function

* We can also define the start, stop and
step size as range(start,stop,step size).
* step size defaults to | if not provided.

Output: [2, 3, 4, 5, 6, 7]
print(list(range(2, 8)))

¥ Output: [2; 5, 8, 11, 14, 47]
print(list(range(2, 20, 3)))

——
L |
Fi

8

:ﬁfiﬁt{"Program to verify if a given number is prime ")
n = int(input("Enter the number "))

flag = True

for div in range(2,n):

ifn % div = 0:
flag = False

J

print ("Prime" if flag == True else "Not Prime")

Exercise

* Write a program to calculate the factorial
of a given number.

= #program to calculate the factorial of a number.
n = int (input ('Enter a number :'))
res = 1

for x in range(l,n + 1):
res = res * x

Print{'ractorial aF * . A e ¥ o yas)

break and continue

» Loops iterate over a block of code until test expression
is false, but sometimes we wish to terminate the
current iteration or even the whole loop without
checking test expression.

* break statement

» The break statement terminates the loop containing it.
Control of the program flows to the statement
immediately after the body of the loop.

« If break statement is inside a nested loop (loop inside
another loop), break will terminate the innermost loop.

for var in sequence:
codes inside for loop
if condition:
break
codes inside for loop

codes outside for loop

while test expression:
¥ codes inside while loop
if condition:
break
codes inside while loop

codes outside while loop

Exercise

* Write a program to check if a given
number is prime or not.

* If a number is divisible by any number
between 2 and n-1, its not prime,
otherwise prime

e

“print ("Program to verify if a given number is prime ")
.%n = int(input ("Enter the number "))
flag = True

for div in range(2,n):
if n % div == 0:
flag = False
break

print("div = " ,div)
print ("Prime" if flag == True else "Not Prime")

continue statement

* The continue statement is used to skip the rest of the
code inside a loop for the current iteration only. Loop

does not terminate but continues on with the next
iteration.

for var in sequence:

g codes inside for loop val range (20) :
if condition: val ¥ 3 == (:
continue I

¥ codes inside for loog

print (val)

print ("The end")

while test expression:

codes inside while loop
| if condition:
continue

for loop with else

» A for loop can have an optional else block as well.
The else part is executed if the items in the sequence
used in for loop exhausts.

» break statement can be used to stop a for loop. In such
case, the else part is ignored.

» Hence,a for loop's else part runs if no break occurs.

#program to demonstrate for with else
digits = [0, 1, 5]

i digits:
print (i)

print ("No items left.")

for loop with else

‘print ("Program to verify if a given number is prime ")
n = int(input ("Enter the number "))

for div in range(2,n):
if n % div == 0:
print ("Not Prime..divisible by" ,div)
break
else:
print ("Prime")

Nested Loop

Python program to display all the prime numbers within an interval

"

lower = int(input{"Enter lower range: "))
upper = int(input({"Enter upper range: "))
print ("Prime numbers between”, lower, "and",upper, "are:")

for num in range(lower,upper + 1}:
4§ prime numbers are greater than 1
1f num > 1:
for i in range(2,num) :
{num % i) == O:
break

“printtnum}

while loop with else

» Same as that of ‘or loop, we can have an
optional else block with while loop as well.

g
2

£ b3
nn

i< n:
fin % 1 == 0):
print('Not Prime...Divisible by ' , 1)

Pass statement

» Suppose we have a [oop or a function that is not
implemented yet, but we want to implement it in the

future.
» They cannot have an empty body.

* We use the pass statement to construct a body that
does nothing.

pass is just a placeholder for
functionality to be added later.
sequence = {'p*, "a', 's', 's'}
for val in sequence:

pass

